Skip to main content
Log in

Self-assembly strategies for the synthesis of functional nanostructured materials

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10 nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer self-assembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process. Moreover the capability to precisely organize these nano-objects on appropriate substrates is the key point to support the technological development of new device concepts with predictable characteristics based on these nano-materials. In the next coming years this area of research, at the intersection between fundamental science and technology, is expected to disclose additional insights in the physics of the self-assembly process and to delineate unforeseen applications for these exciting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liddle J. A. and Gallatin G. M., Nanomanufacturing: A Perspective, ACS Nano, 10 (2016) 2995.

    Article  Google Scholar 

  2. Kelly M. J., Intrinsic top-down unmanufacturability, Nanotechnology, 22 (2011) 245303.

    Article  ADS  Google Scholar 

  3. Lehn J.-M., Toward complex matter: Supramolecular chemistry and self-organization, Proc. Natl. Acad. Sci. U.S.A., 99 (2002) 4763.

    Article  ADS  Google Scholar 

  4. Lehn J.-M., Toward self-organization and complex matter, Science, 295 (2002) 2400.

    Article  ADS  Google Scholar 

  5. Whitesides G. M. and Boncheva M., Beyond molecules: Self-assembly of mesoscopic and macroscopic components, Proc. Natl. Acad. Sci. U.S.A., 99 (2002) 4769.

    Article  ADS  Google Scholar 

  6. Whitesides G. M. and Grzybowski B., Self-Assembly at All Scales, Science, 295 (2002) 2418.

    Article  ADS  Google Scholar 

  7. Winkler D. A. and Halley J. D., Consistent concepts of self-organization and self-assembly, Complexity, 14 (2008) 10.

    Article  Google Scholar 

  8. Stuart M. A. C, Huck W. T. S., Genzer J., Müller M., Ober C, Stamm M., Sukhorukov G. B., Szleifer I., Tsukruk V. V., Urban M., Winnik F., Zauscher S., Luzinov I. and Minko S., Emerging applications of stimuli-responsive polymer materials, Nat. Mater., 9 (2010) 101.

    Article  ADS  Google Scholar 

  9. Epstein I. R. and Xu B., Reaction-diffusion processes at the nano- and microscales, Nat. Nanotechnol., 11 (2016) 312.

    Article  ADS  Google Scholar 

  10. Cummins C., Ghoshal T., Holmes J. D. and Morris M. A., Strategies for Inorganic Incorporation using Neat Block Copolymer Thin Films for Etch Mask Function and Nanotechnological Application, Adv. Mater. (2016), DOI: 10.1002/adma.201503432.

  11. Herr D. J. C., Directed block copolymer self-assembly for nanoelectronics fabrication, J. Mater. Res., 26 (2011) 122.

    Article  ADS  Google Scholar 

  12. Cheng J. Y., Mayes A. M. and Ross C. A., Nanostructure engineering by templated self-assembly of block copolymers, Nat. Mater., 3 (2004) 823.

    Article  ADS  Google Scholar 

  13. Cheng J. Y., Ross C. A., Smith H. I. and Thomas E. L., Templated Self-Assembly of Block Copolymers: Top-Down Helps Bottom-Up, Adv. Mater., 18 (2006) 2505.

    Article  Google Scholar 

  14. Jeong S. J., Kim J. Y., Kim B. H., Moon H. S. and Kim S. O., Directed self-assembly of block copolymers for next generation nanolithography, Mater. Today, 16 (2013) 468.

    Article  Google Scholar 

  15. Bates F. S. and Fredrickson G. H., Block Copolymer Thermodynamics: Theory and Experiment, Annu. Rev. Phys. Chem., 41 (1990) 525.

    Article  ADS  Google Scholar 

  16. Fredrickson G. H. and Bates F. S., DYNAMICS OF BLOCK COPOLYMERS: Theory and Experiment, Annu. Rev. Mater. Sci., 26 (1996) 501.

    Article  ADS  Google Scholar 

  17. Lutz J. F., Aperiodic Copolymers, ACS Macro Lett., 3 (2014) 1021.

    Article  Google Scholar 

  18. Ring W., Mita I., Jenkins A. D. and Bikales N. M., Source-Based Nomenclature for Copolymers, Pure Appl. Chem., 57 (1985) 1427.

    Article  Google Scholar 

  19. Kim H. C., Park S. M. and Hinsberg W. D., Block copolymer based nanostructures: materials, processes, and applications to electronics, Chem. Rev., 110 (2010) 146.

    Article  Google Scholar 

  20. Fasolka M. J. and Mayes A. M., BLOCK COPOLYMER THIN FILMS: Physics and Applications, Annu. Rev. Mater. Res., 31 (2001) 323.

    Article  ADS  Google Scholar 

  21. Leiblert L., Theory of Microphase Separation in Block Copolymers, Macromolecules, 1617 (1980) 1602.

    Article  ADS  Google Scholar 

  22. Bates F. S., Polymer-Polymer Phase Behavior, Science, 251 (1991) 898.

    Article  ADS  Google Scholar 

  23. Abetz V. and Simon P. F. W., Phase Behaviour and Morphologies of Block Copolymers, Adv. Polym. Sci., 189 (2005) 125.

    Article  Google Scholar 

  24. Kim J. K., Yang S. Y., Lee Y. and Kim Y., Functional nanomaterials based on block copolymer self-assembly, Prog. Polym. Sci., 35 (2010) 1325.

    Article  Google Scholar 

  25. Nunns A., Gwyther J. and Manners I., Inorganic block copolymer lithography, Polymer, 54 (2013) 1269.

    Article  Google Scholar 

  26. Zhou J., Whittell G. R. and Manners I., Metalloblock Copolymers: New Functional Nanomaterials, Macromolecules, 47 (2014) 3529.

    Article  ADS  Google Scholar 

  27. Park C., Yoon J. and Thomas E. L., Enabling nanotechnology with self assembled block copolymer patterns, Polymer, 44 (2003) 6725.

    Article  Google Scholar 

  28. Li M. and Ober C. K., Block copolymer patterns and templates, Mater. Today, 9 (2006) 30.

    Article  Google Scholar 

  29. Bates F. S. and Fredrickson G. H., Block copolymers: Designer soft materials, Phys. Today, 52 (1999) 32.

    Article  Google Scholar 

  30. Darling S. B., Directing the self-assembly of block copolymers, Prog. Polym. Sci., 32 (2007) 1152.

    Article  Google Scholar 

  31. Segalman R. A., Patterning with block copolymer thin films, Mater. Sci. Engin. R: Rep., 48 (2005) 191.

    Article  Google Scholar 

  32. Kramer E. J., Phase transition in thin block copolymer films, MRS Bull., 35 (2010) 457.

    Article  Google Scholar 

  33. Koo K., Ahn H., Kim S.-W., Ryu D. Y. and Russell T. P., Directed self-assembly of block copolymers in the extreme: guiding microdomains from the small to the large, Soft Matter, 9 (2013) 9059.

    Article  ADS  Google Scholar 

  34. Cochran E. W., Garcia-Cervera C. J. and Fredrickson G. H., Stability of the gyroid phase in diblock copolymers at strong segregation, Macromolecules, 39 (2006) 2449.

    Article  ADS  Google Scholar 

  35. Matsen M. W. and Schick M., Stable and Unstable Phases of a Diblock Copolymer Melt, Phys. Rev. Lett., 72 (1994) 2660.

    Article  ADS  Google Scholar 

  36. Ohta T., Equilibrium Morphology of Block Copolymer Melts, Macromolecules, 19 (1986) 2621.

    Article  ADS  Google Scholar 

  37. Han C. D., Kim J. and Kim J. K., Determination of the Order-Disorder Transition Temperature, Macromolecules, 22 (1989) 383.

    Article  ADS  Google Scholar 

  38. Son J. G., Gotrik K. W. and Ross C. A., High-Aspect-Ratio Perpendicular Orientation of PS-b-PDMS Thin Films under Solvent Annealing, ACS Macro Lett., 1 (2012) 1279.

    Article  Google Scholar 

  39. Russell T. P., Temperature Dependence of the Interaction Parameter of Polystyrene and Poly(methylmethacrylate), Macromolecules, 23 (1990) 890.

    Article  ADS  Google Scholar 

  40. Giammaria T. J., Ferrarese Lupi F., Seguini G., Perego M., Vita F., Francescangeli O., Wenning B., Ober C. K., Sparnacci K., Antonioli D., Gianotti V. and Laus M., Micrometer scale ordering of silicon-containing block copolymer thin films via high temperature thermal treatment, ACS Appl. Mater. Interfaces, 8 (2016) 9897.

    Article  Google Scholar 

  41. Son J. G., Chang J. B., Berggren K. K. and Ross C. A., Assembly of sub-10-nm block copolymer patterns with mixed morphology and period using electron irradiation and solvent annealing, Nano Lett., 11 (2011) 5079.

    Article  ADS  Google Scholar 

  42. Albert J. N. L., Bogart T. D., Lewis R. L., Beers K. L., Fasolka M. J., Hutchison J. B., Vogt B. D. and Epps T. H., Gradient Solvent Vapor Annealing of Block Copolymer Thin Films Using a Microfluidic Mixing Device, Nano Lett., 11 (2011) 1351.

    Article  ADS  Google Scholar 

  43. Bai W., Hannon A. F., Gotrik K. W., Choi H. K., Aissou K., Liontos G., Ntetsikas K., Alexander-Katz A., Avgeropoulos A. and Ross C. A., Thin Film Morphologies of Bulk-Gyroid Polystyrene-block- Polydimethylsiloxane under Solvent Vapor Annealing, Macromolecules, 47 (2014) 6000.

    Article  ADS  Google Scholar 

  44. Lo T. Y., Chao C. C. and Ho R. M., Phase Transitions of Polystyrene-b-poly(dimethylsiloxane) in Solvents of Varying Selectivity, Macromolecules, 46 (2013) 7513.

    Article  ADS  Google Scholar 

  45. Kennemur J. G., Yao L., Bates F. S. and Hillmyer M. A., Sub-5nm Domains in Ordered Poly(cyclohexylethylene)-block-poly(methyl methacrylate) Block Polymers for Lithography, Macromolecules, 47 (2014) 1411.

    Article  ADS  Google Scholar 

  46. Yokoyama H., Diffusion of block copolymers, Mater. Sci. Engin. R: Rep., 53 (2006) 199.

    Article  Google Scholar 

  47. Lodge T. P. and Dalvi M. C., Mechanisms of Chain Diffusion in Lamellar Block Copolymers, Phys. Rev. Lett., 75 (1995) 657.

    Article  ADS  Google Scholar 

  48. Dalvi M., Eastman C. and Lodge T., Diffusion in microstructured block copolymers: Chain localization and entanglements, Phys. Rev. Lett., 71 (1993) 2591.

    Article  ADS  Google Scholar 

  49. Epps, III T. H. and O’Reilly R. K., Block copolymers: controlling nanostructure to generate functional materials — synthesis, characterization, and engineering, Chem. Sci., 7 (2016) 1674.

    Article  Google Scholar 

  50. Cheng J., Ross C., Chan V., Thomas E., Lammertink R. and Vancso G., Formation of a cobalt magnetic dot array via block copolymer lithography, Adv. Mater., 13 (2001) 1174.

    Article  Google Scholar 

  51. Ruiz R., Kang H., Detcheverry F. A., Dobisz E., Kercher D. S., Albrecht T. R., de Pablo J. J. and Nealey P. F., Density multiplication and improved lithography by directed block copolymer assembly, Science, 321 (2008) 936.

    Article  ADS  Google Scholar 

  52. Frascaroli J., Brivio S., Ferrarese Lupi F., Seguini G., Boarino L., Perego M. and Spiga S., Resistive Switching in High-Density Nanodevices Fabricated by Block Copolymer Self-Assembly, ACS Nano, 9 (2015) 2518.

    Article  Google Scholar 

  53. Stefik M. and Guldin S., Block copolymer self-assembly for nanophotonics, Chem. Soc. Rev., 44 (2015) 5076.

    Article  Google Scholar 

  54. Dolan J. A., Wilts B. D., Vignolini S., Baumberg J. J., Steiner U. and Wilkinson T. D., Optical Properties of Gyroid Structured Materials: From Photonic Crystals to Metamaterials, Adv. Opt. Mater., 3 (2015) 12.

    Article  Google Scholar 

  55. Tang J., Wang H.-T., Lee D. H., Fardy M., Huo Z., Russell T. P. and Yang P., Holey silicon as an efficient thermoelectric material, Nano Lett., 10 (2010) 4279.

    Article  ADS  Google Scholar 

  56. Lim J., Wang H.-T., Tang J., Andrews S. C., So H., Lee J., Lee D. H., Russell T. P. and Yang P., Simultaneous Thermoelectric Property Measurement and Incoherent Phonon Transport in Holey Silicon, ACS Nano, 10 (2016) 124.

    Article  Google Scholar 

  57. Lee J., Lim J. and Yang P., Ballistic phonon transport in holey silicon, Nano Lett., 15 (2015) 3273.

    Article  ADS  Google Scholar 

  58. Rahman A., Ashraf A., Xin H., Tong X., Sutter P., Eisaman M. D. and Black C. T., Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells, Nature Commun., 6 (2015) 5963.

    Article  ADS  Google Scholar 

  59. Tsai H., Pitera J. W., Miyazoe H., Bangsaruntip S., Engelmann S. U., Liu C.-c., Cheng J. Y., Bucchignano J. J., Klaus D. P., Joseph E. A., Sanders D. P., Colburn M. E. and Guillorn M. A., Two-Dimensional Pattern Formation Using Graphoepitaxy of PS-b-PMMA Block Copolymers for Advanced FinFET Device and Circuit Fabrication, ACS Nano, 8 (2014) 5227.

    Article  Google Scholar 

  60. Wan L., Ruiz R., Gao H., Patel K. C. and Albrecht T. R., The Limits of Lamellae-Forming PS-b-PMMA Block Copolymers for Lithography, ACS Nano, 9 (2015) 7506.

    Article  Google Scholar 

  61. Querelle S. E., Jackson E. A., Cussler E. L. and Hillmyer M. A., Ultrafiltration Membranes with a Thin Poly(styrene)-b-poly(isoprene) Selective Layer, ACS Appl. Mater. Interfaces, 5 (2013) 5044.

    Article  Google Scholar 

  62. Yang S. Y., Yang J. A., Kim E. S., Jeon G., Oh E. J., Choi K. Y., Hahn S. K. and Kim J. K., Single-file diffusion of protein drugs through cylindrical nanochannels, ACS Nano, 4 (2010) 3817.

    Article  Google Scholar 

  63. Shen L., He C., Qiu J., Lee S.-M., Kalita A., Cronin S. B., Stoykovich M. P. and Yoon J., Nanostructured Silicon Photocathodes for Solar Water Splitting Patterned by the Self-Assembly of Lamellar Block Copolymers, ACS Appl. Mater. Interfaces, 7 (2015) 26043.

    Article  Google Scholar 

  64. Checco A., Ocko B. M., Rahman, A. Black C. T., Tasinkevych M., Giacomello A. and Dietrich S., Collapse and reversibility of the superhydrophobic state on nanotextured surfaces, Phys. Rev. Lett., 112 (2014) 216101.

    Article  ADS  Google Scholar 

  65. Checco A., Rahman A. and Black C. T., Robust superhydrophobicity in large-area nanostructured surfaces defined by block-copolymer self assembly, Adv. Mater., 26 (2014) 886.

    Article  Google Scholar 

  66. Killops K. L., Gupta N., Dimitriou M. D., Lynd N. A., Jung H., Tran H., Bang J. and Campos L. M., Nanopatterning Biomolecules by Block Copolymer Self-Assembly, ACS Macro Lett., 1 (2012) 758.

    Article  Google Scholar 

  67. Jeong C. K., Jin H. M., Ahn J.-H., Park T. J., Yoo H. G., Koo M., Choi Y.-K., Kim S. O. and Lee K. J., Electrical biomolecule detection using nanopatterned silicon via block copolymer lithography, Small, 10 (2014) 337.

    Article  Google Scholar 

  68. Ross C, Smith H., Savas T., Schattenburg M., Farhoud M., Hwang M., Walsh M., Abraham M. C. and Ram R. J., Fabrication of patterned media for high-density magnetic storage, J. Vac. Sci. Technol. B, 17 (1999) 3168.

    Article  Google Scholar 

  69. Ross C., Patterned magnetic recording media, Annu. Rev. Mater. Res., 31 (2001) 203.

    Article  ADS  Google Scholar 

  70. Hong A. J., Liu C.-C., Wang Y., Kim J., Xiu F., Ji S., Zou J., Nealey P. F. and Wang K. L., Metal nanodot memory by self-assembled block copolymer lift-off, Nano Lett., 10 (2010) 224.

    Article  ADS  Google Scholar 

  71. Xu T., Kim H.-C., Derouchey J., Seney C, Levesque C, Martin P., Stafford C. M. and Russell T. P., The influence of molecular weight on nanoporous polymer films, Polymer, 42 (2001) 9091.

    Article  Google Scholar 

  72. Seguini G., Giammaria T. J., Ferrarese Lupi F., Sparnacci K., Antonioli D., Gianotti V., Vita F., Placentino I. F., Hilhorst J., Ferrero C., Francescangeli O., Laus M. and Perego M., Thermally induced self-assembly of cylindrical nanodomains in low molecular weight PS-b-PMMA thin films, Nanotechnology, 25 (2014) 045301.

    Article  ADS  Google Scholar 

  73. Ham S., Shin C., Kim E., Ryu D. Y., Jeong U., Russell T. P. and Hawker C. J., Microdomain Orientation of PS-b-PMMA by Controlled Interfacial Interactions, Macromolecules, 41 (2008) 6431.

    Article  ADS  Google Scholar 

  74. Zucchi I. A., Poliani E. and Perego M., Microdomain orientation dependence on thickness in thin films of cylinder-forming PS-b-PMMA, Nanotechnology, 21 (2010) 185304.

    Article  ADS  Google Scholar 

  75. Han E., Leolukman M., Kim M. and Gopalan P., Resist Free Patterning of Nonpreferential Buffer Layers for Block Copolymer Lithography, ACS Nano, 4 (2010) 6527.

    Article  Google Scholar 

  76. Peng Q., Tseng Y.-C., Darling S. B. and Elam J. W., A Route to Nanoscopic Materials via Sequential Infiltration Synthesis on Block Copolymer Templates, ACS Nano, 5 (2011) 4600.

    Article  Google Scholar 

  77. Huang E., Pruzinsky S., Russell T. P., Mays J. and Hawker C. J., Neutrality conditions for block copolymer systems on random copolymer brush surfaces, Macromolecules, 32 (1999) 5299.

    Article  ADS  Google Scholar 

  78. Bates C. M., Seshimo T., Maher M. J., Durand W. J., Cushen J. D., Dean L. M., Blachut G., Ellison C. J. and Willson C. G., Polarity-switching top coats enable orientation of sub-10-nm block copolymer domains, Science, 338 (2012) 775.

    Article  ADS  Google Scholar 

  79. Hamley I. W., Ordering in thin films of block copolymers: Fundamentals to potential applications, Prog. Polym. Sci., 34 (2009) 1161.

    Article  Google Scholar 

  80. Mastroianni S. E. and Epps T. H., Interfacial Manipulations: Controlling Nanoscale Assembly in Bulk, Thin Film, and Solution Block Copolymer Systems, Langmuir, 29 (2013) 3864.

    Article  Google Scholar 

  81. Sakurai S., Progress in control of microdomain orientation in block copolymers: Efficiencies of various external fields, Polymer, 12 (2008) 2781.

    Article  Google Scholar 

  82. Xiang H., Lin Y. and Russell T. P., Electrically induced patterning in block copolymer films, Macromolecules, 37 (2004) 5358.

    Article  ADS  Google Scholar 

  83. Liedel C, Pester C. W., Ruppel M., Lewin C, Pavan M. J., Urban V. S., Shenhar R., Bosecke P. and Boker A., Block copolymer nanocomposites in electric fields: kinetics of alignment, ACS Macro Lett., 2 (2013) 53.

    Article  Google Scholar 

  84. Sinturel C., Vayer M., Morris M. and Hillmyer M. A., Solvent Vapor Annealing of Block Polymer Thin Films, Macromolecules, 46 (2013) 5399.

    Article  ADS  Google Scholar 

  85. Kim S. O., Solak H. H., Stoykovich M. P., Ferrier N. J., de Pablo J. J. and Nealey P. F., Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates, Nature, 424 (2003) 411.

    Article  ADS  Google Scholar 

  86. Bita I., Yang J. K. W., Jung Y. S., Ross C. A., Thomas E. L. and Berggren K. K., Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates, Science, 321 (2008) 939.

    Article  ADS  Google Scholar 

  87. Park S., Lee D. H., Xu J., Kim B., Hong S. W., Jeong U., Xu T. and Russell T. P., Macroscopic 10-Terabit Square-Inch Arrays from Block Copolymers with Lateral Order, Science, 323 (2009) 1030.

    Article  ADS  Google Scholar 

  88. Mansky P., Liu Y., Huang E., Russell T. P. and Hawker C., Controlling Polymer-Surface Interactions with Random Copolymer Brushes, Science, 275 (1997) 1458.

    Article  Google Scholar 

  89. Peters R. D., Yang X. M., Kim T. K. and Nealey P. F., Wetting behavior of block copolymers on self-assembled films of alkylchlorosiloxanes: effect of grafting density, Langmuir, 16 (2000) 9620.

    Article  Google Scholar 

  90. Ryu D. Y., Shin K., Drockenmuller E., Hawker Craig J. and Russell T. P., A generalized approach to the modification of solid surfaces, Science, 308 (2005) 236.

    Article  ADS  Google Scholar 

  91. Pickett G. T., Witten T. A. and Nagel S. R., Equilibrium surface orientation of lamellae, Macromolecules, 26 (1993) 3194.

    Article  ADS  Google Scholar 

  92. Peters R. D., Yang X. M., Kim T. K., Sohn B. H. and Nealey P. F., Using self-assembled monolayers exposed to x-rays to control the wetting behavior of thin films of diblock copolymers, Langmuir, 16 (2000) 4625.

    Article  Google Scholar 

  93. Borah D., Shaw M. T., Holmes J. D. and Morris M. A., Sub-10nm feature size PS-b-PDMS block copolymer structures fabricated by a microwave-assisted solvothermal process, ACS Appl. Mater. Interfaces, 5 (2013) 2004.

    Article  Google Scholar 

  94. Ji S., Liu C.-C., Son J. G., Gotrik K., Craig G. S. W., Gopalan P., Himpsel F. J., Char K. and Nealey P. F., Generalization of the Use of Random Copolymers To Control the Wetting Behavior of Block Copolymer Films, Macromolecules, 41 (2008) 9098.

    Article  ADS  Google Scholar 

  95. Ceresoli M., Palermo M., Ferrarese Lupi F., Seguini G., Perego M., Zuccheri G., Phadatare S. D., Antonioli D., Gianotti V., Sparnacci K. and Laus M., Neutral wetting brush layers for block copolymer thin films using homopolymer blends processed at high temperatures, Nanotechnology, 26 (2015) 415603.

    Article  Google Scholar 

  96. Antonioli D., Sparnacci K., Laus M., Ferrarese Lupi F., Giammaria T. J., Seguini G., Ceresoli M., Perego M. and Gianotti V., Composition of ultrathin binary polymer brushes by thermogravimetry-gas chromatography-mass spectrometry, Anal. Bioanal. Chem., 408 (2016) 3155.

    Article  Google Scholar 

  97. Milner S. T., Polymer Brushes, Science, 251 (1991) 905.

    Article  ADS  Google Scholar 

  98. Kopf A., Baschnagel J., Wittmer J. and Binder K., On the adsorption process in polymer brushes: a monte carlo study, Macromolecules, 29 (1996) 1433.

    Article  ADS  Google Scholar 

  99. Zhao B. and Brittain W. J., Polymer brushes: surface-immobilized macromolecules, Prog. Polym. Sci., 25 (2000) 677.

    Article  Google Scholar 

  100. Iyer K. and Luzinov I., Effect of macromolecular anchoring layer thickness and molecular weight on polymer grafting, Macromolecules, 37 (2004) 9538.

    Article  ADS  Google Scholar 

  101. Zdyrko B., Swaminatha I. K. and Luzinov I., Macromolecular anchoring layers for polymer grafting: Comparative study, Polymer, 47 (2006) 272.

    Article  Google Scholar 

  102. Sparnacci K., Antonioli D., Gianotti V., Laus M., Ferrarese Lupi F., Giammaria T. J., Seguini G. and Perego M., Ultrathin random copolymer-grafted layers for block copolymer self-assembly, ACS Appl. Mater. Interfaces, 7 (2015) 10944.

    Article  Google Scholar 

  103. Han E., Stuen K. O., La Y.-H., Nealey P. F. and Gopalan P., Effect of Composition of Substrate-Modifying Random Copolymers on the Orientation of Symmetric and Asymmetric Diblock Copolymer Domains, Macromolecules, 41 (2008) 9090.

    Article  ADS  Google Scholar 

  104. Gianotti V., Antonioli D., Sparnacci K., Laus M., Giammaria T. J., Ferrarese Lupi F., Seguini G. and Perego M., On the Thermal Stability of PS-b-PMMA Block and P(S-r-MMA) Random Copolymers for Nanopatterning Applications, Macromolecules, 46 (2013) 8224.

    Article  ADS  Google Scholar 

  105. Ferrarese Lupi F., Giammaria T. J., Seguini G., Ceresoli M., Perego M., Antonioli D., Gianotti V., Sparnacci K. and Laus M., Flash grafting of functional random copolymers for surface neutralization, J. Mater. Chem. C, 2 (2014) 4909.

    Article  Google Scholar 

  106. Ferrarese Lupi F., Giammaria T. J., Seguini G., Laus M., Enrico E., De Leo N., Boarino L., Ober C. K. and Perego M., Thermally induced orientational flipping of cylindrical phase diblock copolymers, J. Mater. Chem. C, 2 (2014) 2175.

    Article  Google Scholar 

  107. Liu C.-C., Thode C. J., Rincon Delgadillo P. A., Craig G. S. W., Nealey P. F. and Gronheid R., Towards an all-track 300 mm process for directed self-assembly, J. Vac. Sci. Technol. B, 29 (2011) 06F203.

    Article  Google Scholar 

  108. Ryu D. Y., Wang J.-Y., Lavery K. A., Drockenmuller E., Satija S. K., Hawker C. J. and Russell T. P., Surface Modification with Cross-Linked Random Copolymers: Minimum Effective Thickness, Macromolecules, 40 (2007) 4296.

    Article  ADS  Google Scholar 

  109. Andreozzi A., Poliani E., Seguini G. and Perego M., The effect of random copolymer on the characteristic dimensions of cylinder-forming PS-b-PMMA thin films, Nanotechnology, 22 (2011) 185304.

    Article  ADS  Google Scholar 

  110. Seguini G., Zanenga F., Giammaria T. J., Ceresoli M., Sparnacci K., Antonioli D., Gianotti V., Laus M. and Perego M., Enhanced Lateral Ordering in Cylinder Forming PS-b-PMMA Block Copolymers Exploiting the Entrapped Solvent, ACS Appl. Mater. Interfaces, 8 (2016) 8280.

    Article  Google Scholar 

  111. Li W. and Müller M., Defects in the Self-Assembly of Block Copolymers and Their Relevance for Directed Self-Assembly, Annu. Rev. Chem. Biomol. Engin., 6 (2015) 187.

    Article  Google Scholar 

  112. Müller M. and de Pablo J. J., Computational Approaches for the Dynamics of Structure Formation in Self-Assembling Polymeric Materials, Annu. Rev. Mater. Res., 43 (2013) 1.

    Article  ADS  Google Scholar 

  113. Matsen M. W. and Bates F., Unifying weak- and strong-segregation block-copolymer theories, Macromolecules, 29 (1996) 1091.

    Article  ADS  Google Scholar 

  114. Marencic A. P. and Register R. A., Controlling order in block copolymer thin films for nanopatterning applications, Annu. Rev. Chem. Biomol. Engin., 1 (2010) 277.

    Article  Google Scholar 

  115. Gianotti V., Antonioli D., Sparnacci K., Laus M., Giammaria T. J., Ceresoli M., Ferrarese Lupi F., Seguini G. and Perego M., Characterization of ultra-thin polymeric films by Gas chromatography-Mass spectrometry hyphenated to thermogravimetry, J. Chromatogr. A, 1368 (2014) 204.

    Article  Google Scholar 

  116. Ferrarese Lupi F., Giammaria T. J., Seguini G., Vita F., Francescangeli O., Sparnacci K., Antonioli D., Gianotti V., Laus M. and Perego M., Fine Tuning of Lithographic Masks through Thin Films of PS-b-PMMA with Different Molar Mass by Rapid Thermal Processing, ACS Appl. Mater. Interfaces, 6 (2014) 7180.

    Article  Google Scholar 

  117. Ceresoli M., Ferrarese Lupi F., Seguini G., Sparnacci K., Gianotti V., Antonioli D., Laus M., Boarino L. and Perego M., Evolution of lateral ordering in symmetric block copolymer thin films upon rapid thermal processing, Nanotechnology, 25 (2014) 275601.

    Article  Google Scholar 

  118. Ceresoli M., Volpe F. G., Seguini G., Antonioli D., Gianotti V., Sparnacci K., Laus M. and Perego M., Scaling of correlation length in lamellae forming PS-b-PMMA thin films upon high temperature rapid thermal treatments, J. Mater. Chem. C, 3 (2015) 8618.

    Article  Google Scholar 

  119. Sparnacci K., Antonioli D., Gianotti V., Laus M., Zuccheri G., Ferrarese Lupi F., Giammaria T. J., Seguini G., Ceresoli M. and Perego M., Thermal stability of functional P(S-r-MMA) random copolymers for nanolithographic applications, ACS Appl. Mater. Interfaces, 7 (2015) 3920.

    Article  Google Scholar 

  120. Ferrarese Lupi F., Giammaria T. J., Ceresoli M., Seguini G., Sparnacci K., Antonioli D., Gianotti V., Laus M. and Perego M., Rapid thermal processing of self-assembling block copolymer thin films, Nanotechnology, 24 (2013) 315601.

    Article  ADS  Google Scholar 

  121. Campbell I. P., He C. and Stoykovich M. P., Topologically Distinct Lamellar Block Copolymer Morphologies Formed by Solvent and Thermal Annealing, ACS Macro Lett., 2 (2013) 918.

    Article  Google Scholar 

  122. Gu X., Gunkel I., Hexemer A., Gu W. and Russell T. P., An in situ grazing incidence X-ray scattering study of block copolymer thin films during solvent vapor annealing, Adv. Mater., 26 (2014) 273.

    Article  Google Scholar 

  123. Qiang Z., Zhang Y., Groff J. A., Cavicchi K. A. and Vogt B. D., A generalized method for alignment of block copolymer films: solvent vapor annealing with soft shear, Soft Matter, 10 (2014) 6068.

    Article  ADS  Google Scholar 

  124. Yager K. G., Fredin N. J., Zhang X., Berry B. C., Karim A. and Jones R. L., Evolution of block-copolymer order through a moving thermal zone, Soft Matter, 6 (2010) 92.

    Article  ADS  Google Scholar 

  125. Choi E., Park S., Ahn H., Lee M., Bang J., Lee B. and Ryu D. Y., Substrate-Independent Lamellar Orientation in High-Molecular-Weight Polystyrene-b-poly(methyl methacrylate) Films: Neutral Solvent Vapor and Thermal Annealing, Macromolecules, 47 (2014) 3969.

    Article  ADS  Google Scholar 

  126. Jin C., Murphy J. N., Harris K. D. and Buriak J. M., Deconvoluting the Mechanism of Microwave Annealing of Block Copolymer Thin Films, ACS Nano, 8 (2014) 3979.

    Article  ADS  Google Scholar 

  127. Majewski P. W. and Yager K. G., Millisecond Ordering of Block Copolymer Films via Photothermal Gradients, ACS Nano, 9 (2015) 3896.

    Article  Google Scholar 

  128. Yoon E., Kim E., Kim D. and Son J. G., Top-Coat Dewetting for the Highly Ordered Lateral Alignment of Block Copolymer Microdomains in Thin Films, Adv. Funct. Mater., 25 (2015) 913.

    Article  Google Scholar 

  129. Stenbock-Fermor A., Knoll A. W., Boker A. and Tsarkova L., Enhancing Ordering Dynamics in Solvent-Annealed Block Copolymer Films by Lithographic Hard Mask Supports, Macromolecules, 47 (2014) 3059.

    Article  ADS  Google Scholar 

  130. Park W. I., Kim J. M., Jeong J. W. and Jung Y. S., Deep-Nanoscale Pattern Engineering by Immersion-Induced Self-Assembly, ACS Nano, 8 (2014) 10009.

    Article  Google Scholar 

  131. Perego M., Ferrarese Lupi F., Ceresoli M., Giammaria T. J., Seguini G., Enrico E., Boarino L., Antonioli D., Gianotti V., Sparnacci K. and Laus M., Ordering dynamics in symmetric PS-b-PMMA diblock copolymer thin films during rapid thermal processing, J. Mater. Chem. C, 2 (2014) 6655.

    Article  Google Scholar 

  132. Boyer D. and Viñals J., Domain coarsening of stripe patterns close to onset, Phys. Rev. E, 64 (2001) 050101.

    Article  ADS  Google Scholar 

  133. Kamaga C., Ibrahim F. and Dennin M., Dislocation dynamics in an anisotropic stripe pattern, Phys. Rev. E, 69 (2004) 066213.

    Article  ADS  Google Scholar 

  134. Harrison C, Adamson D. H., Cheng Z., Sebastian J. M., Sethuraman S., Huse D. A., Register R. A. and Chaikin P. M., Mechanisms of Ordering in Striped Patterns, Science, 290 (2000) 1558.

    Article  ADS  Google Scholar 

  135. Ruiz R., Bosworth J. K. and Black C. T., Effect of structural anisotropy on the coarsening kinetics of diblock copolymer striped patterns, Phys. Rev. B, 77 (2008) 054204.

    Article  ADS  Google Scholar 

  136. Ruiz R., Sandstrom R. L. and Black C. T., Induced Orientational Order in Symmetric Diblock Copolymer Thin Films, Adv. Mater., 19 (2007) 587.

    Article  Google Scholar 

  137. Vega D. A., Harrison C. K., Angelescu D. E., Trawick M. L., Huse D. A., Chaikin P. M. and Register R. A., Ordering mechanisms in two-dimensional sphere-forming block copolymers, Phys. Rev. E, 71 (2005) 061803.

    Article  ADS  Google Scholar 

  138. Harrison C., Angelescu D. E., Trawick M., Cheng Z., Huse D. A., Chaikin P. M., Vega D. A., Sebastian J. M., Register R. A. and Adamson D. H., Pattern coarsening in a 2D hexagonal system, Europhys. Lett., 67 (2004) 800.

    Article  ADS  Google Scholar 

  139. Black C. T. and Guarini K. W., Structural evolution of cylindrical-phase diblock copolymer thin films, J. Polym. Sci. A: Polym. Chem., 42 (2004) 1970.

    Article  ADS  Google Scholar 

  140. Ji S., Liu C. C., Liao W., Fenske A. L., Craig G. S. W. and Nealey P. F., Domain orientation and grain coarsening in cylinder-forming poly(styrene-b-methyl methacrylate) films, Macromolecules, 44 (2011) 4291.

    Article  ADS  Google Scholar 

  141. Rockford L., Liu Y., Mansky P., Russell T. P., Yoon M. and Mochrie S. G. J., Polymers on nanoperiodic, heterogeneous surfaces, Phys. Rev. Lett., 82 (1999) 2602.

    Article  ADS  Google Scholar 

  142. Xie N., Li W., Qiu F. and Shi A. C., New strategy of nanolithography via controlled block copolymer self-assembly, Soft Matter, 9 (2013) 536.

    Article  ADS  Google Scholar 

  143. Ji S., Wan L., Liu C.-C. and Nealey P. F., Directed self-assembly of block copolymers on chemical patterns: A platform for nanofabrication, Prog. Polym. Sci., 54–55 (2016) 76.

    Article  Google Scholar 

  144. Stoykovich M. P., Kang H., Daoulas K. C., Liu G., Liu C.-C., De Pablo J. J., Müller M. and Nealey P. F., Directed Self-Assembly of Block Copolymers for Nanolithography: Fabrication of Isolated Features and Essential Integrated Circuit Geometries, ACS Nano, 1 (2007) 168.

    Article  Google Scholar 

  145. Park S., Kim B., Hawker C., Kramer E., Bang J. and Ha J., Controlled ordering of block copolymer thin films by the addition of hydrophilic nanoparticles, Macromolecules, 40 (2007) 8119.

    Article  ADS  Google Scholar 

  146. Tada Y., Yoshida H., Ishida Y., Hirai T., Bosworth J. K., Dobisz E., Ruiz R., Takenaka M., Hayakawa T. and Hasegawa H., Directed self-assembly of poss containing block copolymer on lithographically defined chemical template with morphology control by solvent vapor, Macromolecules, 45 (2012) 292.

    Article  ADS  Google Scholar 

  147. Segalman R. A., Yokoyama H. and Kramer E. J., Graphoepitaxy of Spherical Domain Block Copolymer Films, Adv. Mater., 136 (2001) 1152.

    Article  Google Scholar 

  148. Ilievski F. and Ross C. A., Graphoepitaxy of block copolymers using selectively removable templates, J. Vac. Sci. Technol. B, 28 (2010) 42.

    Article  Google Scholar 

  149. Tong Q. and Sibener S. J., Visualization of Individual Defect Mobility and Annihilation within Cylinder-Forming Diblock Copolymer Thin Films on Nanopatterned Substrates, Macromolecules, 46 (2013) 8538.

    Article  ADS  Google Scholar 

  150. Park S. M., Stoykovich M. P., Ruiz R., Zhang Y., Black C. T. and Nealey P. F., Directed Assembly of Lamellae- Forming Block Copolymers by Using Chemically and Topographically Patterned Substrates, Adv. Mater., 19 (2007) 607.

    Article  Google Scholar 

  151. Maher M. J., Rettner C. T., Bates C. M., Blachut G., Carlson M. C, Durand W. J., Ellison C. J., Sanders D. P., Cheng J. Y. and Willson C. G., Directed self-assembly of silicon-containing block copolymer thin films, ACS Appl. Mater. Interfaces, 7 (2015) 3323.

    Article  Google Scholar 

  152. Jeong S. J., Kim J. E., Moon H. S., Kim B. H., Kim S. M., Kim J. B. and Kim S. O., Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement, Nano Lett., 9 (2009) 2300.

    Article  ADS  Google Scholar 

  153. Park S.-M., Berry B. C., Dobisz E. and Kim H.-C., Observation of surface corrugation-induced alignment of lamellar microdomains in PS-b-PMMA thin films, Soft Matter, 5 (2009) 957.

    Article  ADS  Google Scholar 

  154. Perego M., Andreozzi A., Vellei A., Ferrarese Lupi F. and Seguini G., Collective behavior of block copolymer thin films within periodic topographical structures, Nanotechnology, 24 (2013) 245301.

    Article  ADS  Google Scholar 

  155. Ferrarese Lupi F., Aprile G., Giammaria T. J., Seguini G., Zuccheri G., De Leo N., Boarino L., Laus M. and Perego M., Thickness and Microdomain Orientation of Asymmetric PS-b-PMMA Block Copolymer Films Inside Periodic Gratings, ACS Appl. Mater. Interfaces, 7 (2015) 23615.

    Article  Google Scholar 

  156. Chen W., Luo J., Shi P., Li C., He X., Hong P., Li J. and Zhao C., Self-assembling morphologies of symmetrical PS-b-PMMA in different sized confining grooves, RSC Adv., 4 (2014) 50393.

    Article  Google Scholar 

  157. Cheng Y., Ross C. A., Thomas E. L., Smith H. I. and Vancso G. J., Templated self-assembly of block copolymers: Effect of substrate topography, Adv. Mater., 15 (2003) 1599.

    Article  Google Scholar 

  158. Xiao S., Yang X. M., Edwards E. W., La Y.-H. and Nealey P. F., Graphoepitaxy of cylinder-forming block copolymers for use as templates to pattern magnetic metal dot arrays, Nanotechnology, 16 (2005) 324.

    Article  Google Scholar 

  159. Hosaka S., Akahane T., Huda M., Zhang H. and Yin Y., Controlling of 6 nm sized and 10 nm pitched dot arrays ordered along narrow guide lines using PS-b-PDMS self-assembly, ACS Appl. Mater. Interfaces, 6 (2014) 6208.

    Article  Google Scholar 

  160. Borah D., Rasappa S., Salaun M., Zellsman M., Lorret O., Liontos G., Ntetsikas K., Avgeropoulos A. and Morris M. A., Soft graphoepitaxy for large area directed self-assembly of polystyrene-block-poly(dimethylsiloxane) block copolymer on nanopatterned poss substrates fabricated by nanoimprint lithography, Adv. Funct. Mater., 25 (2015) 3425.

    Article  Google Scholar 

  161. Frascaroli J., Seguini G., Spiga S., Perego M. and Boarino L., Fabrication of periodic arrays of metallic nanoparticles by block copolymer templates on HfO2 substrates, Nanotechnology, 26 (2015) 215301.

    Article  ADS  Google Scholar 

  162. Perego M., Andreozzi A., Seguini G., Schamm-Chardon S., Castro C. and BenAssayag G., Silicon crystallization in nanodot arrays organized by block copolymer lithography, J. Nanoparticle Res., 16 (2014) 2775.

    Article  ADS  Google Scholar 

  163. Andreozzi A., Lamagna L., Seguini G., Fanciulli M., Schamm-Chardon S., Castro C. and Perego M., The fabrication of tunable nanoporous oxide surfaces by block copolymer lithography and atomic layer deposition, Nanotechnology, 22 (2011) 335303.

    Article  Google Scholar 

  164. Bigall N. C., Nandan B., Gowd E. B., Horechyy A. and Eychmüller A., High-Resolution Metal Nanopatterning by Means of Switchable Block Copolymer Templates, ACS Appl. Mater. Interfaces, 7 (2015) 12559.

    Article  Google Scholar 

  165. Guarini K. W., Black C. T., Zhang Y., Babich I. V., Sikorski E. M. and Gignac L. M., Low voltage, scalable nanocrystal flash memory fabricated by templated self assembly, IEDM 03 technical digest. IEEE International, 2003, pages 22.2.1-22.2.4.

  166. Kang G. B., Kim Y. T., Park J. H., Kim S.-I. and Sohn Y.-S., Fabrication of silicon nanodots on insulator using block copolymer thin film, Curr. Appl. Phys., 9 (2009) e197.

    Article  Google Scholar 

  167. Farrell R. A., Petkov N., Morris M. A. and Holmes J. D., Self-assembled templates for the generation of arrays of 1-dimensional nanostructures: From molecules to devices, J. Colloid Interface Sci., 349 (2010) 449.

    Article  ADS  Google Scholar 

  168. Ferrarese Lupi F., Giammaria T. J., Volpe F. G., Lotto F., Seguini G., Pivac B., Laus M. and Perego M., High Aspect Ratio PS-b-PMMA Block Copolymer Masks for Lithographic Applications, ACS Appl. Mater. Interfaces, 6 (2014) 21389.

    Article  Google Scholar 

  169. Castro C., Schamm-Chardon S., Pecassou B., Andreozzi A., Seguini G., Perego M. and BenAssayag G., In-plane organization of silicon nanocrystals embedded in SiO2 thin films, Nanotechnology, 24 (2013) 075302.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perego, M., Seguini, G. Self-assembly strategies for the synthesis of functional nanostructured materials. Riv. Nuovo Cim. 39, 279–312 (2016). https://doi.org/10.1393/ncr/i2016-10124-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2016-10124-4

Navigation