Skip to main content
Log in

Plasmonic nanostructures for the ultrasensitive detection of biomolecules

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

The central physical phenomenon described in this paper is the optical generation of surface plasmon polaritons within different kinds of nanostructures. It determines the local enhancement of the incident and scattered electromagnetic field by nearby molecules. The paper reviews different plasmonic devices whose design and spatial arrangement offer an optimal detection level of biomolecules when combined with Raman spectroscopy or hot electrons imaging. Recent results, obtained by the authors, demonstrated that it is possible to reach an analytical sensitivity in the attomolar concentration range, with an analytical specificity to solve complex peptide mixtures characterized by single point mutation in cancer detection experiments. In a different context, exploiting the adiabatic compression phenomenon, we have reported the possibility to generate both light and hot electrons sources in a localized area of few nanometers. Their energy control and accurate spatial localization allow the investigation of matter with unprecedented accuracy and richness of information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Romanato F. et al., Microelectron. Eng., 67-68 (2003) 479.

    Article  Google Scholar 

  2. Moberly Chan W. J., Adams D. P., Aziz M. J., Hobler G. and Schenkel T., MRS Bull., 32 (2007) 424.

    Article  Google Scholar 

  3. De Angelis F. et al., Nanoscale, 2 (2010) 2230.

    Article  ADS  Google Scholar 

  4. Palange A. L. et al., Frontiers Oncol., 2 (2012) 161.

    Article  ADS  Google Scholar 

  5. Zipeng Zhen J. X., Theranostics., 2 (2012) 45.

    Article  Google Scholar 

  6. Toccafondi C. et al., Appl. Surf. Sci., 351 (2015) 738.

    Article  Google Scholar 

  7. Toccafondi C. et al., J. Mater. Sci.: Mater. Med., 25 (2014) 2411.

    Google Scholar 

  8. Candeloro P. et al., Analyst, 136 (2011) 4402.

    Article  ADS  Google Scholar 

  9. Quaresima B. et al., Am. Assoc. Cancer Res., 14 (2008) 6797.

    Google Scholar 

  10. Deniz A. A., Mukhopadhyay S. and Lemke E. A., J. R. Soc. Interface, 5 (2008) 15.

    Article  Google Scholar 

  11. Gentile F. et al., Nanoscale, 6 (2014) 8208.

    Article  ADS  Google Scholar 

  12. De Angelis F. et al., Nat. Photon., 5 (2011) 682.

    Article  ADS  Google Scholar 

  13. Gentile F. et al., ACS Appl. Mater. Interfaces, 4 (2012) 3213.

    Article  Google Scholar 

  14. Walt D. R., Anal. Chem., 85 (2013) 1258.

    Article  Google Scholar 

  15. Greulic K. O., Curr. Pharm. Biotechnol., 5 (2004) 243.

    Article  Google Scholar 

  16. Das G. et al., Sci. Rep. 3 (2013) 1792.

    Article  Google Scholar 

  17. Das G. et al., Analyst, 137 (2012) 1785.

    Article  ADS  Google Scholar 

  18. Chirumamilla M. et al., Microelectron. Eng., 97 (2012) 189.

    Article  Google Scholar 

  19. Sako Y. et al., Systems Biol. Med., 4 (2012) 183.

    MathSciNet  Google Scholar 

  20. Das G. et al., ACS Appl. Mater. Interfaces, 7 (2015) 23597.

    Article  Google Scholar 

  21. Cojoc D. et al., Microelectron. Eng., 78-79 (2005) 125.

    Article  Google Scholar 

  22. Liberale C. et al., Sci. Rep., 3 (2013) 1258.

    Article  Google Scholar 

  23. Yang S., Dai X., Stogin B. B. and Wong T.-S., Proc. Natl. Acad. Sci. U.S.A., 113 (2016) 268.

    Article  ADS  Google Scholar 

  24. Stahelin R. V., Mol. Biol. Cell, 24 (2013) 883.

    Article  Google Scholar 

  25. Homola J., Chem. Rev., 108 (2008) 462.

    Article  Google Scholar 

  26. D’Andrea C. et al., ACS Nano, 7 (2013) 3522.

    Article  Google Scholar 

  27. Gopalakrishnan A. et al., Ann. Phys., 524 (2012) 620.

    Article  Google Scholar 

  28. Metiu H. and Das P., Annu. Rev. Phys. Chem., 35 (1984) 507.

    Article  ADS  Google Scholar 

  29. Lee J., Mubeen S., Ji X., Stucky G. D. and Moskovits M., Nano Lett., 12 (2012) 5014.

    Article  ADS  Google Scholar 

  30. Moskovits M., J. Raman Spectrosc., 36 (2005) 485.

    Article  ADS  Google Scholar 

  31. Meyer S. A., Le Ru E. C. and Etchegoin P. G., Anal. Chem., 83 (2011) 2337.

    Article  Google Scholar 

  32. Stewart M. E. et al., Chem. Rev., 108 (2008) 494.

    Article  Google Scholar 

  33. Candeloro P. et al., Analyst, 138 (2013) 7331.

    Article  ADS  Google Scholar 

  34. Ziegler L. D., Acc. Chem. Res., 27 (1994) 1.

    Article  Google Scholar 

  35. Gentile F. et al., Microelectron. Eng., 87 (2010) 798.

    Article  Google Scholar 

  36. Matousek P., Towrie M. and Parker A. W., J. Raman Spectrosc., 33 (2002) 238.

    Article  ADS  Google Scholar 

  37. Kowalska A. A., Kaminska A., Adamkiewicz W., Witkowska E. and Tkacz M., J. Raman Spectrosc., 46 (2015) 428.

    Article  ADS  Google Scholar 

  38. Fleischmann M., Hendra P. J. and McQuillan A. J., Chem. Phys. Lett., 26 (1974) 163.

    Article  ADS  Google Scholar 

  39. Jeanmaire D. L. and Van Duyne R. P., J. Electroanal. Chem. Interfacial Electrochem., 84 (1977) 1.

    Article  Google Scholar 

  40. Nie S. and Emory S. R., Science, 275 (1997) 1102.

    Article  Google Scholar 

  41. Kneipp K. et al., Phys. Rev. Lett., 78 (1997) 1667.

    Article  ADS  Google Scholar 

  42. Le Ru E. C., Meyer M. and Etchegoin P. G., J. Phys. Chem. B, 110 (2006) 1944.

    Article  Google Scholar 

  43. Das G. et al., Microelectron. Eng., 97 (2012) 383.

    Article  Google Scholar 

  44. Das G. et al., Biosensors Bioelectron., 24 (2009) 1693.

    Article  Google Scholar 

  45. Das G. et al., Microelectron. Eng., 85 (2008) 1282.

    Article  Google Scholar 

  46. Wood R. W., Proc. Phys. Soc. London, 18 (1902) 269.

    Article  Google Scholar 

  47. Pines D. and Bohm D., Phys. Rev., 85 (1952) 338.

    Article  ADS  MathSciNet  Google Scholar 

  48. Bohm D. and Pines D., Phys. Rev., 92 (1953) 609.

    Article  ADS  MathSciNet  Google Scholar 

  49. Fano U., Phys. Rev., 103 (1956) 1202.

    Article  ADS  Google Scholar 

  50. Fano U., J. Opt. Soc. Am., 31 (1941) 213.

    Article  ADS  Google Scholar 

  51. Kretschmann E. and Raether H., Z. Naturforsch. A, 23 (1968) 2135.

    Article  ADS  Google Scholar 

  52. Stern E. A. and Ferrell R. A., Phys. Rev., 120 (1960) 130.

    Article  ADS  MathSciNet  Google Scholar 

  53. Otto A., Z. Phys., 216 (1968) 398.

    Article  ADS  Google Scholar 

  54. Ritchie R. H., Phys. Rev., 106 (1957) 874.

    Article  ADS  MathSciNet  Google Scholar 

  55. Malerba M. et al., Microelectron. Eng., 97 (2012) 204.

    Article  Google Scholar 

  56. Anker J. N. et al., Nat. Mater., 7 (2008) 442.

    Article  ADS  Google Scholar 

  57. Pitarke J. M., Silkin V. M., Chulkov E. V. and Echenique P. M., Rep. Prog. Phys., 70 (2007) 1.

    Article  ADS  Google Scholar 

  58. Willets K. and Van Duyne R., Annu. Rev. Phys. Chem., 58 (2007) 267.

    Article  ADS  Google Scholar 

  59. Maier S. A., Plasmonics: Fundamentals and Applications (Springer) 2007.

  60. Enoch S. and Bonod N., Plasmonics From Basics to Advanced Topics, Springer Series in Optical Sciences Vol. 167 (Springer) 2012.

  61. Johnson P. B. and Christy R. W., Phys. Rev. B, 6 (1972) 4370.

    Article  ADS  Google Scholar 

  62. Petryayeva E. and Krull U. J., Anal. Chim. Acta, 706 (2011) 8.

    Article  Google Scholar 

  63. Kim K.-H., Husakou A. and Herrmann J., Opt. Express, 18 (2010) 7488.

    Article  ADS  Google Scholar 

  64. Sihvola A., J. Nanomater., 2007 (2007) 45090.

    Article  Google Scholar 

  65. Katrin K., Harald K., Irving I., Ramachandra R. D. and Michael S. F., J. Phys.: Condens. Matter, 14 (2002) R597.

    Google Scholar 

  66. Haynes C. L., McFarland A. D. and Duyne R. P. V., Anal. Chem., 77 (2005) 338 A.

    Article  Google Scholar 

  67. Marc Lamy de la Chapelle A. P. and Pucci A. (Editors), Nanoantenna: Plasmon-Enhanced Spectroscopies for Biotechnological Applications, (CRC Press) 2013.

  68. Goia D. V. and Matijevic E., New J. Chem., 22 (1998) 1203.

    Article  Google Scholar 

  69. Coluccio M. L. et al., Microelectron. Eng., 86 (2009) 1085.

    Article  Google Scholar 

  70. Di Fabrizio E. et al., In Tech open, 14 (2012) 293.

    Google Scholar 

  71. Stockman M., Phys. Today, 64 (2011) 39.

    Article  Google Scholar 

  72. Stockman M. I., Pandey L. N. and George T. F., Phys. Rev. B, 53 (1996) 2183.

    Article  ADS  Google Scholar 

  73. Stockman M. I., Phys. Rev. Lett., 93 (2004) 137404.

    Article  ADS  Google Scholar 

  74. Dai J., Čajko F., Tsukerman I. and Stockman M. I., Phys. Rev. B, 77 (2008) 115419.

    Article  ADS  Google Scholar 

  75. Li K., Stockman M. I. and Bergman D. J., Phys. Rev. Lett., 91 (2003) 227402.

    Article  ADS  Google Scholar 

  76. Coluccio M. L. et al., Sci. Adv., 1 (2015) e1500487.

    Article  ADS  Google Scholar 

  77. Coluccio M. L. et al., J. Optics, 17 (2015) 114021.

    Article  ADS  Google Scholar 

  78. Intartaglia R. et al., Phys. Chem. Chem. Phys., 15 (2013) 3075.

    Article  Google Scholar 

  79. Chen Y. et al., Opt. Commun., 311 (2013) 100.

    Article  ADS  Google Scholar 

  80. Das G. et al., Microelectron. Eng., 111 (2013) 247.

    Article  Google Scholar 

  81. Chirumamilla M. et al., Adv. Mater., 26 (2014) 2353.

    Article  Google Scholar 

  82. De Angelis F. et al., Nano Lett., 8 (2008) 2321.

    Article  ADS  Google Scholar 

  83. De Angelis F. et al., Microelectron. Eng., 87 (2010) 1312.

    Article  Google Scholar 

  84. De Angelis F. et al., Microelectron. Eng., 85 (2008) 1286.

    Article  Google Scholar 

  85. Petrin A. B., High Temp., 49 (2011) 22.

    Article  Google Scholar 

  86. Petrin A. B., High Temp., 51 (2013) 147.

    Article  Google Scholar 

  87. Petrin A. B., Quantum Electron., 45 (2015) 658.

    Article  ADS  Google Scholar 

  88. Petrin A. B., High Temp., 54 (2016) 8.

    Article  Google Scholar 

  89. Gramotnev D. K., Vogel M. W. and Stockman M. I., J. Appl. Phys., 104 (2008) 034311.

    Article  ADS  Google Scholar 

  90. De Angelis F. et al., Nat. Nanotechnol., 5 (2010) 67.

    Article  ADS  Google Scholar 

  91. Stockman M. I., Phys. Rev. Lett., 93 (2004) 137404, Erratum in Phys. Rev. Lett., 106 (2011) 019901.

    Article  ADS  Google Scholar 

  92. Proietti Zaccaria R. et al., Phys. Rev. B 86 (2012) 035410.

    Article  ADS  Google Scholar 

  93. Zaccaria R. P. et al., Opt. Lett., 37 (2012) 545.

    Article  ADS  Google Scholar 

  94. Xiao Y., Lai R. Y. and Plaxco K. W., Nat. Protocols, 2 (2007) 2875.

    Article  Google Scholar 

  95. Jockusch S., Lee D., Turro N. J. and Leonard E. F., Proc. Natl. Acad. Sci. U.S.A., 93 (1996) 7446.

    Article  ADS  Google Scholar 

  96. Laurent G. et al., Nano Lett., 5 (2005) 253.

    Article  ADS  Google Scholar 

  97. Fazio B. et al., ACS Nano, 5 (2011) 5945.

    Article  Google Scholar 

  98. Quester K., Avalos-Borja M., Vilchis-Nestor A. R., Camacho-López M. A. and Castro-Longoria E., PLoS ONE, 8 (2013) e77486.

    Article  ADS  Google Scholar 

  99. Duncan J. A., Reeves J. R. and Cooke T. G., Mol. Pathol., 51 (1998) 237.

    Article  Google Scholar 

  100. Giugni A. et al., Nat. Nanotechnol., 8 (2013) 845.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Di Fabrizio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, G., Coluccio, M.L., Alrasheed, S. et al. Plasmonic nanostructures for the ultrasensitive detection of biomolecules. Riv. Nuovo Cim. 39, 547–586 (2016). https://doi.org/10.1393/ncr/i2016-10129-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2016-10129-y

Navigation