Skip to main content
Log in

The structure of DNA by direct imaging and related topics

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

Super-hydrophobicity is a well-known and studied phenomenon in the field of surface sciences. In this review we report a novel approach that exploits micro-fabricated super-hydrophobic surfaces for the oriented and self-organized deposition and suspension of DNA filaments and other macromolecules of biological interest. The self-assembled structures obtained with this approach can be used for the characterization of the biological compounds with several methods such as electron microscopy, X-ray diffraction, Raman and SERS spectroscopies. Besides imaging, the described method has been applied in several fields such as the sensing of few molecules in diluted solutions and innovative templating growth. We will focus in particular on the direct imaging of DNA molecules by Transmission Electron Microscopy with the capability to resolve structural details of the double helix down to a resolution of 1.5 Å. The review starts with a brief historical note on the discovery of the DNA structure and continues with the results obtained by our group along the last 10 years of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Levene P. A. and Jacobs W. A., “Uber die Hefe-Nucleinsaure”, Eur. J. Inorg. Chem., 42 (1909) 2474.

    Google Scholar 

  2. Levene B. Y. P. A. and S L., “Guaninedesoxypentoside from thymus nucleic acid.”, J. Biol. Chem., 81 (1929) 711.

    Google Scholar 

  3. Avery O. T., McLeod C. and Mccarty M. D., “Studies on the chemical nature of the substance inducing transformation of pneumococcal types”, J. Exp. Med., 79 (1944) 137, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2135445&tool=pmcentrez&rendertype=abstract.

    Article  Google Scholar 

  4. Chargaff E., “Chemical specificity of nucleic acids and mechanism of their enzymatic degradation”, Experientia, 6 (1950) 201, http://www.ncbi.nlm.nih.gov/pubmed/8174683.

    Article  Google Scholar 

  5. Wilkins M. H. F., Stokes A. R. and Wilson H. R., “Molecular structure of deoxypentose nucleic acids”, Nature, 171 (1953) 738.

    Article  ADS  Google Scholar 

  6. Franklin R. E. and Gosling R. G., “Molecular configuration in sodium thymonucleate”, Nature, 171 (1953) 740.

    Article  ADS  Google Scholar 

  7. Franklin R. E. and Gosling R. G., “Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate”, Nature, 172 (1953) 156.

    Article  ADS  Google Scholar 

  8. Franklin R. E. and Gosling R. G., “The structure of sodium thymonucleate fibres. I. The influence of water content”, Acta Crystallogr., 6 (1953) 673.

    Article  Google Scholar 

  9. Pauling L., Corey R. B. and Branson H. R., “The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain”, Proc. Natl. Acad. Sci. U.S.A., 37 (1951) 205.

    Article  ADS  Google Scholar 

  10. Watson J. D. and Crick F. H. C., “Molecular structure of nucleic acids”, Nature, 171 (1953) 737, http://www.nature.com/physics/looking-back/crick/%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/13054692.

    Article  ADS  Google Scholar 

  11. Kiskinova M., Marsi M., Di Fabrizio E. and Gentili M., “Synchrotron radiation scanning photoemission microscopy: instrumentation and application in surface science”, Surf. Rev. Lett., 6 (1999) 265.

    Article  ADS  Google Scholar 

  12. Collins M. D. and Gordon S. E., “Short-chain phosphoinositide partitioning into plasma membrane models”, Biophys. J., 105 (2013) 2485.

    Article  ADS  Google Scholar 

  13. Saenger W., Principles of nucleic acids structure (Springer) 1984.

  14. Taylor R. and Kennard O., “The molecular structures of nucleosides and nucleotides. Part 1. The influence of protonation on the geometries of nucleic acid constituents”, J. Mol. Struct., 78 (1982) 1.

    Article  ADS  Google Scholar 

  15. Sette M., D’Addabbo P., Kelly G., Cicconi A., Micheli E., Cacchione S., Poma A., Gargioli C., Giambra V. and Frezza D., “Evidence for a quadruplex structure in the polymorphic hs1.2 enhancer of the immunoglobulin heavy chain 3′ regulatory regions and its conservation in mammals”, Biopolymers., 105 (2016) 768.

    Article  Google Scholar 

  16. Yu X., Li Z., Shen J., Chan M. T. V. and Wu W. K. K., “Role of microRNAs in primary central nervous system lymphomas”, Cell Prolif., 49 (2016) 147, http://dx.doi.org/10.1111/cpr.12243.

    Article  Google Scholar 

  17. Yu A. A., Savas T., Cabrini S., DiFabrizio E., Smith H. I. and Stellacci F., “High resolution printing of DNA feature on poly(methyl methacrylate) substrates using supramolecular nano-stamping”, J. Am. Chem. Soc., 127 (2005) 16774.

    Article  Google Scholar 

  18. Teo P. Y., Cheng W., Hedrick J. L. and Yang Y. Y., “Co-delivery of drugs and plasmid DNA for cancer therapy”, Adv. Drug Deliv. Rev., 98 (2016) 41.

    Article  Google Scholar 

  19. Goodchild J., “Therapeutic oligonucleotides”, Methods Mol. Biol., 764 (2011) 1.

    Article  Google Scholar 

  20. Evers M. M., Toonen L. J. A. and van Roon-Mom W. M. C., “Antisense oligonucleotides in therapy for neurodegenerative disorders”, Adv. Drug Deliv. Rev., 87 (2015) 90, http://www.sciencedirect.com/science/article/pii/S0169409X15000435.

    Article  Google Scholar 

  21. Parashar A., “Aptamers in Therapeutics”, J. Clin. Diagn. Res., 10 (2016) BE01, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4963637/.

    Google Scholar 

  22. Agarwal A., Rhoades W. R., Hanout M., Soliman M. K., Sarwar S., Sadiq M. A., Sepah Y. J., Do D. V. and Nguyen Q. D., “Management of neovascular age-related macular degeneration: Current state-of-the-art care for optimizing visual outcomes and therapies in development”, Clin. Ophthalmol., 9 (2015) 1001.

    Google Scholar 

  23. Keefe A. D., Pai S. and Ellington A., “Aptamers as therapeutics”, Nat. Rev. Drug Discov., 9 (2010) 537, http://dx.doi.org/10.1038/nrd3141.

    Article  Google Scholar 

  24. Lao Y. H., Phua K. K. L. and Leong K. W., “Aptamer nanomedicine for cancer therapeutics: Barriers and potential for translation”, ACS Nano, 9 (2015) 2235.

    Article  Google Scholar 

  25. Lu H., Busch J., Jung M., Rabenhorst S., Ralla B., Kilic E., Mergemeier S., Budach N., Fendler A. and Jung K., “Diagnostic and prognostic potential of circulating cell-free genomic and mitochondrial DNA fragments in clear cell renal cell carcinoma patients”, Clin. Chim. Acta., 452 (2016) 109.

    Article  Google Scholar 

  26. Connolly I. D., Li Y., Gephart M. H. and Nagpal S., “The ‘Liquid Biopsy’: the Role of Circulating DNA and RNA in Central Nervous System Tumors”, Curr. Neurol. Neurosci. Rep., 16 (2016) 1.

    Article  Google Scholar 

  27. Almassalha L. M., Bauer G. M., Chandler J. E., Gladstein S., Cherkezyan L., Stypula-Cyrus Y., Weinberg S., Zhang D., Thusgaard Ruhoff P., Roy H. K., Subramanian H., Chandel N. S., Szleifer I. and Backman V., “Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy”, Proc. Natl. Acad. Sci. U.S.A., 113 (2016) E6372.

    Article  Google Scholar 

  28. Dempsey G. T., Vaughan J. C., Chen K. H., Bates M. and Zhuang X., “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging”, Nat. Meth., 8 (2011) 1027.

    Article  Google Scholar 

  29. Turkowyd B., Virant D. and Endesfelder U., “From single molecules to life: microscopy at the nanoscale”, Anal. Bioanal. Chem., 408 (2016) 6885, http://dx.doi.org/10.1007/s00216-016-9781-8.

    Article  Google Scholar 

  30. Wombacher R., Heidbreder M., van de Linde S., Sheetz M. P., Heilemann M., Cornish V. W. and Sauer M., “Live-cell super-resolution imaging with trimethoprim conjugates”, Nat. Meth., 7 (2010) 717.

    Article  Google Scholar 

  31. Flors C., “DNA and chromatin imaging with super-resolution fluorescence microscopy based on single-molecule localization”, Biopolymers, 95 (2011) 290.

    Article  Google Scholar 

  32. Ebeling D. et al., “Imaging of biomaterials in liquids: a comparison between conventional and Q-controlled amplitude modulation (‘tapping mode’) atomic force microscopy”, Nanotechnology, 17 (2006) S221, http://stacks.iop.org/0957-4484/17/i=7/a=S20.

    Article  Google Scholar 

  33. Poma A., Spano L., Pittaluga E., Tucci A., Palladino L. and Limongi T., “Interactions between saporin, a ribosome-inactivating protein, and DNA: a study by atomic force microscopy”, J. Microsc., 217 (2005) 69.

    Article  MathSciNet  Google Scholar 

  34. Di Bucchianico S., Venora G., Lucretti S., Limongi T., Palladino L. and Poma A., “Saponaria officinalis karyology and karyotype by means of image analyzer and atomic force microscopy”, Microsc. Res. Tech., 71 (2008) 730.

    Article  Google Scholar 

  35. Lyubchenko Y. L., Shlyakhtenko L. S. and Ando T., “Imaging of nucleic acids with atomic force microscopy”, Methods, 54 (2011) 274.

    Article  Google Scholar 

  36. Lyubchenko Y. L., “DNA structure and dynamics: an atomic force microscopy study”, Cell Biochem. Biophys., 41 (2004) 75.

    Article  Google Scholar 

  37. Billingsley D. J., Bonass W. A., Crampton N., Kirkham J. and Thomson N. H., “Single-molecule studies of DNA transcription using atomic force microscopy”, Phys. Biol., 9 (2012) 21001.

    Article  Google Scholar 

  38. Pyne A., Thompson R., Leung C., Roy D. and Hoogenboom B.W., “Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy”, Small, 10 (2014) 3257.

    Article  Google Scholar 

  39. Uchihashi T., Tanigawa M., Ashino M., Sugawara Y., Yokoyama K., Morita S. and Ishikawa Mitsuru, “Identification of B-Form DNA in an Ultrahigh Vacuum by Noncontact-Mode Atomic Force Microscopy”, Langmuir, 16 (2000) 1349.

    Article  Google Scholar 

  40. Ido S., Kimura K., Oyabu N., Kobayashi K., Tsukada M., Matsushige K. and Yamada H., “Beyond the helix pitch: Direct visualization of native DNA in aqueous solution”, ACS Nano, 7 (2013) 1817.

    Article  Google Scholar 

  41. Tanaka H. and Kawai T., “Partial sequencing of a single DNA molecule with a scanning tunnelling microscope”, Nat. Nanotechnol., 4 (2009) 518, http://dx.doi.org/10.1038/nnano.2009.155.

    Article  ADS  Google Scholar 

  42. Shapir E., Cohen H., Calzolari A., Cavazzoni C., Ryndyk D. A., Cuniberti G., Kotlyar A., Di Felice R. and Porath D., “Electronic structure of single DNA molecules resolved by transverse scanning tunnelling spectroscopy”, Nat. Mater., 7 (2008) 68.

    Article  ADS  Google Scholar 

  43. Sun H.B. and Yokota H., “MutS-mediated detection of DNA mismatches using atomic force microscopy”, Anal. Chem., 72 (2000) 3138.

    Article  Google Scholar 

  44. Wang H., Yang Y., Schofield M.J., Du C., Fridman Y., Lee S. D., Larson E. D., Drummond J. T., Alani E., Hsieh P. and Erie D. A, “DNA bending and unbending by MutS govern mismatch recognition and specificity”, Proc. Natl. Acad. Sci. U.S.A., 100 (2003) 14822, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=299810&tool=pmcentrez&rendertype=abstract.

    Article  ADS  Google Scholar 

  45. Jiang Y. and Marszalek P. E., “Atomic force microscopy captures MutS tetramers initiating DNA mismatch repair”, Embo J., 30 (2011) 2881, http://www.ncbi.nlm.nih.gov/pubmed/21666597%5Cnhttp://emboj.embopress.org/content/embojnl/30/14/2881.full.pdf.

    Article  Google Scholar 

  46. Robin Harris J. and Horne R. W., “Negative staining: A brief assessment of current technical benefits, limitations and future possibilities”, Micron., 25 (1994) 5.

    Article  Google Scholar 

  47. Uyeda Y. and Fujiyoshi N., “The Alumina Supermicrogrid for High Resolution Electron Microscopy”, J. Electron. Microsc., 27 (1978) 75.

    Google Scholar 

  48. Fujiyoshi Y. and Uyeda N., “Direct imaging of a double-strand DNA molecule”, Ultramicroscopy., 7 (1981) 189, http://www.sciencedirect.com/science/article/pii/0304399181900097.

    Article  Google Scholar 

  49. Taylor K. A. and Glaeser R. M., “Electron Diffraction of Frozen, Hydrated Protein Crystals”, Science, 186 (1974) 1036, http://www.sciencemag.org/content/186/4168/1036.abstract.

    Article  ADS  Google Scholar 

  50. Brilot A. F., Chen J. Z., Cheng A., Pan J., Harrison S. C., Potter C. S., Carragher B., Henderson R. and Grigorieff N., “Beam-induced motion of vitrified specimen on holey carbon film”, J. Struct. Biol., 177 (2012) 630.

    Article  Google Scholar 

  51. Nogales E., “The development of cryo-EM into a mainstream structural biology technique”, Nat. Meth., 13 (2016) 24, http://dx.doi.org/10.1038/nmeth.3694%5Cn10.1038/nmeth.3694.

    Article  Google Scholar 

  52. Nogales E. and Scheres S. H. W., “Cryo-EM: A Unique Tool for the Visualization of Macromolecular Complexity”, Mol. Cell., 58 (2015) 677.

    Article  Google Scholar 

  53. Mishyna M., Volokh O., Danilova Y., Gerasimova N., Pechnikova E. and Sokolova O. S., “Effects of radiation damage in studies of protein-DNA complexes by cryo-EM”, Micron., 96 (2017) 57, http://linkinghub.elsevier.com/retrieve/pii/S0968432816303626.

    Article  Google Scholar 

  54. Bartesaghi A., Merk A., Banerjee S., Matthies D., Wu X., Milne J. L. S. and Subramaniam S., “2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor”, Science, 348 (2015) 1147, http://www.sciencemag.org.ezproxy.lib.monash.edu.au/content/348/6239/1147.abstract.

    Article  ADS  Google Scholar 

  55. Banerjee S., Bartesaghi A., Merk A., Rao P., Bulfer S. L., Yan Y., Green N., Mroczkowski B., Neitz R. J., Wipf P., Falconieri V., Deshaies R. J., Milne J. L. S., Huryn D., Arkin M. and Subramaniam S., “2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition”, Science, 351 (2016) 871, http://science.sciencemag.org/content/early/2016/01/27/science.aad7974.abstract%5Cnhttp://www.sciencemag.org/cgi/doi/10.1126/science.aad7974%5Cnhttp://arxiv.org/abs/1011.1669%5Cnhttp://dx.doi.org/10.1088/1751-8113/44/8/085201%5Cnhttp://stacks.iop.org/1751-8121/44.

    Article  ADS  Google Scholar 

  56. Henderson R. and Glaeser R. M., “Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals”, Ultramicroscopy, 16 (1985) 139.

    Article  Google Scholar 

  57. Typke D., Gilpin C. J., Downing K. H. and Glaeser R. M., “Stroboscopic image capture: Reducing the dose per frame by a factor of 30 does not prevent beam-induced specimen movement in paraffin”, Ultramicroscopy, 107 (2007) 106.

    Article  Google Scholar 

  58. Li X., Mooney P., Zheng S., Booth C. R., Braunfeld M. B., Gubbens S., Agard D. A. and Cheng, Y., “Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM”, Nat. Methods, 10 (2013) 584, http://www.nature.com/doifinder/10.1038/nmeth.2472%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/23644547%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3684049.

    Article  Google Scholar 

  59. Song F., Chen P., Sun D., Wang M., Dong L., Liang D., Xu R. M., Zhu P. and Li G., “Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units”, Science, 344 (2014) 376, http://www.ncbi.nlm.nih.gov/pubmed/24763583.

    Article  ADS  Google Scholar 

  60. Sun M., Luo C., Xu L., Ji H., Ouyang Q., Yu D. and Chen Y., “Artificial lotus leaf by nanocasting”, Langmuir, 21 (2005) 8978.

    Article  Google Scholar 

  61. Barthlott W. and Neinhuis C., “Purity of the sacred lotus, or escape from contamination in biological surfaces”, Planta, 202 (1997) 1.

    Article  Google Scholar 

  62. Wagner T., Neinhuis C. and Barthlott W., “Wettability and Contaminability of Insect Wings as a Function of Their Surface Sculptures”, Acta Zool., 77 (1996) 213, http://doi.wiley.com/10.1111/j.1463-6395.1996.tb01265.x.

    Article  Google Scholar 

  63. Wenzel R. N., “Resistance of solid surfaces to wetting by water”, J. Ind. Eng. Chem. (Washington, D. C.), 28 (1936) 988.

    Article  Google Scholar 

  64. Cassie B. D., Cassie A. B. D. and Baxter S., “Wettability of porous surfaces”, Trans. Faraday Soc., 40 (1944) 546.

    Article  Google Scholar 

  65. Cassie A. B. D. and Baxter S., “Large Contact Angles of Plant and Animal Surfaces”, Nature, 155 (1945) 21, http://adsabs.harvard.edu/abs/1945Natur.155...21C.

    Article  ADS  Google Scholar 

  66. De Angelis F., Gentile F., Mecarini F., Das G., Moretti M., Candeloro P., Coluccio M. L., Cojoc G., Accardo A., Liberale C., Zaccaria R. P., Perozziello G., Tirinato L., Toma A., Cuda G., Cingolani R. and Di Fabrizio E., “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures”, Nat. Photon., 5 (2011) 682.

    Article  ADS  Google Scholar 

  67. Ciasca G., Papi M., Businaro L., Campi G., Ortolani M., Palmieri V., Cedola A., De Ninno A., Gerardino A., Maulucci G. and De Spirito M., “Recent advances in superhydrophobic surfaces and their relevance to biology and medicine”, Bioinspir. Biomim., 11 (2016) 11001.

    Article  Google Scholar 

  68. Draper M. C., Crick C. R., Orlickaite V., Turek V. A., Parkin I. P. and Edel J. B., “Superhydrophobic surfaces as an on-chip microfluidic toolkit for total droplet control”, Anal. Chem., 85 (2013) 5405.

    Article  Google Scholar 

  69. Quéré D., “Non-sticking drops”, Rep. Prog. Phys., 68 (2005) 2495.

    Article  ADS  Google Scholar 

  70. Peng L., Li H., Zhang Y., Su J., Yu P. and Luo Y., “A superhydrophobic 3D porous material for oil spill cleanup”, RSC Adv., 4 (2014) 46470.

    Article  Google Scholar 

  71. Gentile F., Das G., Coluccio M. L., Mecarini F., Accardo A., Tirinato L., Tallerico R., Cojoc G., Liberale C., Candeloro P., Decuzzi P., De Angelis F. and Di Fabrizio E., “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices”, Microelectron. Eng., 87 (2010) 798, http://dx.doi.org/10.1016/j.mee.2009.11.083.

    Article  Google Scholar 

  72. Marini M., Das G., La Rocca R., Gentile F., Limongi T., Santoriello S., Scarpellini A. and Di Fabrizio E., “Raman spectroscopy for detection of stretched DNAs on superhydrophobic surfaces”, Microelectron. Eng., 119 (2014) 151, http://dx.doi.org/10.1016/j.mee.2014.04.008.

    Article  Google Scholar 

  73. Marini M., Falqui A., Moretti M., Limongi T., Allione M., Genovese A., Lopatin S., Tirinato L., Das G., Torre B., Giugni A., Gentile F., Candeloro P. and Di Fabrizio E., “The structure of DNA by direct imaging”, Sci. Adv., 1 (2015) e1500734, http://advances.sciencemag.org/content/1/7/e1500734.abstract.

    Article  ADS  Google Scholar 

  74. Gentile F., Coluccio M. L., Accardo A., Asande M., Cojoc G., Mecarini F., Das G., Liberale C., De Angelis F., Candeloro P., Decuzzi P. and Di Fabrizio E., “Nanoporous-micropatterned-superhydrophobic surfaces as harvesting agents for few low molecular weight molecules”, Microelectron. Eng., 88 (2011) 1749, http://dx.doi.org/10.1016/j.mee.2010.12.076.

    Article  Google Scholar 

  75. Gentile F., Coluccio M. L., Rondanina E., Santoriello S., Di Mascolo D., Accardo A., Francardi M., De Angelis F., Candeloro P. and Di Fabrizio E., “Non periodic patterning of super-hydrophobic surfaces for the manipulation of few molecules”, Microelectron. Eng., 111 (2013) 272, http://dx.doi.org/10.1016/j.mee.2013.01.036.

    Article  Google Scholar 

  76. Miele E., Accardo A., Falqui A., Marini M., Giugni A., Leoncini M., De Angelis F., Krahne R. and Di Fabrizio E., “Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays”, Small, 11 (2015) 134.

    Article  Google Scholar 

  77. Accardo A., Tirinato L., Altamura D., Sibillano T., Giannini C., Riekel C. and Di Fabrizio E., “Superhydrophobic surfaces allow probing of exosome self organization using X-ray scattering”, Nanoscale, 5 (2013) 2295–9, http://www.ncbi.nlm.nih.gov/pubmed/23426504.

    Article  ADS  Google Scholar 

  78. Accardo A., Di Fabrizio E., Limongi T., Marinaro G. and Riekel C., “Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques”, J. Synchrotron Radiat., 21 (2014) 643.

    Article  Google Scholar 

  79. Gentile F., Moretti M., Limongi T., Falqui A., Bertoni G., Scarpellini A., Santoriello S., Maragliano L., Proietti Zaccaria R. and Di Fabrizio E., “Direct imaging of DNA fibers: The visage of double helix”, Nano Lett., 12 (2012) 6453.

    Article  ADS  Google Scholar 

  80. Gentile F., Coluccio M. L., Limongi T., Perozziello G., Candeloro P. and Di Fabrizio E., “The five Ws (and one H) of super-hydrophobic surfaces in medicine”, Micromachines., 5 (2014) 239.

    Article  Google Scholar 

  81. Gentile F., Battista E., Accardo A., Coluccio M. L., Asande M., Perozziello G., Das G., Liberale C., De Angelis F., Candeloro P., Decuzzi P. and Di Fabrizio E., “Fractal structure can explain the increased hydrophobicity of nanoporous silicon films”, Microelectron. Eng., 88 (2011) 2537, http://dx.doi.org/10.1016/j.mee.2011.01.046.

    Article  Google Scholar 

  82. Gentile F., Coluccio M. L., Accardo A., Marinaro G., Rondanina E., Santoriello S., Marras S., Das G., Tirinato L., Perozziello G., De Angelis F., Dorigoni C., Candeloro P. and Di Fabrizio E., “Tailored Ag nanoparticles/nanoporous superhydrophobic surfaces hybrid devices for the detection of single molecule”, Microelectron. Eng., 97 (2012) 349, http://dx.doi.org/10.1016/j.mee.2012.03.025.

    Article  Google Scholar 

  83. Gentile F., Coluccio M. L., Coppede N., Mecarini F., Das G., Liberale C., Tirinato L., Leoncini M., Perozziello G., Candeloro P., De Angelis F. and Di Fabrizio E., “Superhydrophobic surfaces as smart platforms for the analysis of diluted biological solutions”, ACS Appl. Mater. Interfaces, 4 (2012) 3213.

    Article  Google Scholar 

  84. Sanger F., Coulson A. R., Hong G. F., Hill D. F. and Petersen G. B., “Nucleotide sequence of bacteriophage lambda DNA”, J. Mol. Biol., 162 (1982) 729.

    Article  Google Scholar 

  85. Daniels D. L., Schroeder J. L., Szybalski W., Sanger F., Coulson A. R., Hong G. F., Hill D. F., Petersen G. B. and Blattner F. R., “APPENDIX II Complete Annotated Lambda Sequence”, (1983).

  86. Gentile F., Coluccio M. L., Limongi T., Perozziello G., Candeloro P. and Di Fabrizio E., “The five Ws (and one H) of super-hydrophobic surfaces in medicine”, Micromachines, 5 (2014) 239.

    Article  Google Scholar 

  87. Williams D. B. and Carter C. B., Transmission Electron Microscopy: A Textbook for Materials Science, 2nd edition (Springer-Verlag, New York) 2009, http://www.loc.gov/catdir/enhancements/fy0820/96028435-d.html.

    Google Scholar 

  88. Voet D. and Rich A., “The crystal structures of purines, pyrimidines and their intermolecular complexes”, Prog. Nucleic Acid Res., 10 (1970) 183.

    Article  Google Scholar 

  89. Marini M., Limongi T., Falqui A., Genovese A., Allione M., Moretti M., Lopatin S., Tirinato L., Das G., Torre B., Giugni A., Cesca F., Benfenati F. and Di Fabrizio E., “Imaging and structural studies of DNA-protein complexes and membrane ion channels”, Nanoscale, 9 (2016) 2768.

    Article  Google Scholar 

  90. Marini M., Limongi T., Allione M., Falqui A. and E D. F., “Superhydrophobic Manipulation of DNA”, Adv. Gen. Eng., 3 (2014) 10, http://www.omicsgroup.org/journals/cardiac-specific-knockout-of-p65-mice-resist-to-cardiac-ischemiareperfusion-injury-2169-0111-1000i101.php?aid=42891.

    Google Scholar 

  91. Marini M., Allione M., Torre B., Moretti M., Limongi T., Tirinato L., Giugni A., Das G. and di Fabrizio E., “Raman on suspended DNA: Novel super-hydrophobic approach for structural studies”, Microelectron. Eng., 175 (2017) 38, http://linkinghub.elsevier.com/retrieve/pii/S0167931716305275.

    Article  Google Scholar 

  92. Theophanides T. and Tajmir-Riahi H. A., “Flexibility of DNA and RNA upon Binding to Different Metal Cations. An Investigation of the B to A to Z Conformational Transition by Fourier Transform Infrared Spectroscopy”, J. Biomol. Struct. Dyn., 2 (1985) 995, http://dx.doi.org/10.1080/07391102.1985.10507615.

    Article  Google Scholar 

  93. Parker F. S., “Crystal and solution structures of the B-DNA dodecamer d(CGCAAATTTGCG) probed by Raman spectroscopy: heterogeneity in the crystal structure does not persist in the solution structure”, Biochemistry, 27 (1988) 931, http://www.ncbi.nlm.nih.gov/pubmed/3365372.

    Article  Google Scholar 

  94. Parker F. S., “Applications of infrared, Raman and resonance Raman spectroscopy in biochemistry”, J. Mol. Struct., 128 (1985) 349, http://www.sciencedirect.com/science/article/pii/0022286085850122.

    Google Scholar 

  95. Gentile F., Coluccio M. L., Toma A., Alabastri A., Zaccaria R. P., Das G., De Angelis F., Candeloro P., Liberale C., Perozziello G., Tirinato L., Leoncini M. and Di Fabrizio E., “Plasmonics and Super-Hydrophobicity: A New Class of Nano-Bio-Devices”, Plasmon. Theory Appl., 15 (2013) 501.

    Article  Google Scholar 

  96. Das G., Gentile F., De Angelis F., Coluccio M. L., Liberale C., Proietti Zaccaria R. and Di Fabrizio E., Superhydrophobicity, plasmonics and Raman spectroscopy for few/single molecule detection down to attomolar concentration, Proc. SPIE, 8457 (2012) 84570C, http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.936517.

    Article  Google Scholar 

  97. Coluccio M. L., Gentile F., Das G., Nicastri A., Perri A. M., Candeloro P., Perozziello G., Proietti Zaccaria R., Gongora J. S. T., Alrasheed S., Fratalocchi A., Limongi T., Cuda G. and Di Fabrizio E., “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain”, Sci. Adv., 1 (2015) e1500487.

    Article  ADS  Google Scholar 

  98. Gentile F., Coluccio M. L., Zaccaria R. P., Francardi M., Cojoc G., Perozziello G., Raimondo R., Candeloro P. and Di Fabrizio E., “Selective on site separation and detection of molecules in diluted solutions with super-hydrophobic clusters of plasmonic nanoparticles”, Nanoscale, 6 (2014) 8208, http://pubs.rsc.org/en/content/articlelanding/2014/nr/c4nr00796d%5Cnhttp://pubs.rsc.org/en/content/articlelanding/2014/nr/c4nr00796d#!divAbstract.

    Article  ADS  Google Scholar 

  99. De Angelis F., Das G., Candeloro P., Patrini M., Galli M., Bek A., Lazzarino M., Maksymov I., Liberale C., Andreani L. C. and Di Fabrizio E., “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons”, Nat. Nanotechnol., 5 (2010) 67, http://dx.doi.org/10.1038/nnano.2009.348.

    Article  ADS  Google Scholar 

  100. Tirinato L., Gentile F., Di Mascolo D., Coluccio M. L., Das G., Liberale C., Pullano S. A., Perozziello G., Francardi M., Accardo A., De Angelis F., Candeloro P. and Di Fabrizio E., “SERS analysis on exosomes using super-hydrophobic surfaces”, Microelectron. Eng., 97 (2012) 337, http://dx.doi.org/10.1016/j.mee.2012.03.022.

    Article  Google Scholar 

  101. Hood J. L., San Roman S. and Wickline S. A., “Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis”, Cancer Res., 71 (2011) 3792.

    Article  Google Scholar 

  102. Lee T. H., D’Asti E., Magnus N., Al-Nedawi K., Meehan B. and Rak J., “Microvesicles as mediators of intercellular communication in cancer-the emerging science of cellular “debris””, Semin. Immunopathol., 33 (2011) 1.

    Article  Google Scholar 

  103. Dawson T. M. and Dawson V. L., “Molecular pathways of neurodegeneration in Parkinson’s disease”, Science, 302 (2003) 819.

    Article  ADS  Google Scholar 

  104. Crews L. and Masliah E., “Molecular mechanisms of neurodegeneration in Alzheimer’s disease”, Human Mol. Genet., 19 (2010) R12.

    Article  Google Scholar 

  105. Kelly J. W., “Amyloid fibril formation and protein misassembly: a structural quest for insights into amyloid and prion diseases”, Structure, 5 (1997) 595, http://www.sciencedirect.com/science/article/pii/S0969212697002153%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/9195890.

    Article  Google Scholar 

  106. Pepys M. B., Hawkins P. N., Booth D. R., Vigushin D. M., Tennent G. A., Soutar A. K., Totty N., Nguyen O., Blake C. C. F., Terry C. J., Feest T. G., Zalin A. M. and Hsuan J. J., “Human Lysozyme Gene-Mutations Cause Hereditary Systemic Amyloidosis”, Nature, 362 (1993) 553.

    Article  ADS  Google Scholar 

  107. Lakshmanan A., Cheong D. W., Accardo A., Di Fabrizio E., Riekel C. and Hauser C. A. E., “Aliphatic peptides show similar self-assembly to amyloid core sequences, challenging the importance of aromatic interactions in amyloidosis”, Proc. Natl. Acad. Sci. U.S.A., 110 (2013) 519, http://www.pnas.org/content/110/2/519.

    Article  ADS  Google Scholar 

  108. Accardo A., Gentile F., Mecarini F., De Angelis F., Burghammer M., Di Fabrizio E. and Riekel C., “In situ X-ray scattering studies of protein solution droplets drying on micro-and nanopatterned superhydrophobic PMMA surfaces”, Langmuir, 26 (2010) 15057.

    Article  Google Scholar 

  109. Accardo A., Burghammer M., Di Cola E., Reynolds M., Di Fabrizio E. and Riekel C., “Lysozyme fibrillation induced by convective flow under quasi contact-free conditions”, Soft Matter., 7 (2011) 6792, http://pubs.rsc.org/en/content/articlehtml/2011/sm/c1sm05783a.

    Article  ADS  Google Scholar 

  110. Limongi T., Cesca F., Gentile F., Marotta R., Ruffilli R., Barberis A., Dal Maschio M., Petrini E. M., Santoriello S., Benfenati F. and Di Fabrizio E., “Nanostructured superhydrophobic substrates trigger the development of 3D neuronal networks”, Small, 9 (2013) 402.

    Article  Google Scholar 

  111. Cesca F., Limongi T., Accardo A., Rocchi A., Orlando M., Shalabaeva V., Di Fabrizio E. and Benfenati F., “Fabrication of biocompatible free-standing nanopatterned films for primary neuronal cultures”, RSC Adv., 4 (2014) 45696, http://pubs.rsc.org/en/content/articlehtml/2014/ra/c4ra08361j.

    Article  Google Scholar 

  112. Egerton R. F., Li P. and Malac M., “Radiation damage in the TEM and SEM”, Micron, 35 (2004) 399.

    Article  Google Scholar 

  113. Egerton R. F., “Mechanisms of radiation damage in beam-sensitive specimens, for TEM accelerating voltages between 10 and 300 kV”, Microsc. Res. Tech., 75 (2012) 1550.

    Article  Google Scholar 

  114. Eastman A., “The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes”, Pharmacol. Ther., 34 (1987) 155.

    Article  Google Scholar 

  115. Wang D. and Lippard S. J., “Cellular processing of platinum anticancer drugs”, Nat. Rev. Drug Deliv., 4 (2005) 307.

    Article  Google Scholar 

  116. Ono A., Cao S., Togashi H., Tashiro M., Fujimoto T., Machinami T., Oda S., Miyake Y., Okamoto I. and Tanaka Y., “Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes”, Chem. Commun. (Cambridge), Issue 39 (2008) 4825.

  117. Singer-Lahat D., Dascal N., Mittelman L., Peleg S. and Lotan I., “Imaging plasma membrane proteins in large membrane patches of Xenopus oocytes”, Pflugers Arch. Eur. J. Physiol., 440 (2000) 627.

    Google Scholar 

  118. Navas P., Nowack D. D. and Morre D. J., “Isolation of purified plasma membranes from cultured cells and hepatomas by two-phase partition and preparative free-flow electrophoresis”, Cancer Res., 49 (1989) 2147.

    Google Scholar 

  119. Sereda V. and Lednev I. K., “Polarized Raman spectroscopy of aligned insulin fibrils”, J. Raman Spectrosc., 45 (2014) 665.

    Article  ADS  Google Scholar 

  120. Jahn T. R., Makin O. S., Morris K. L., Marshall K. E., Tian P., Sikorski P. and Serpell L. C., “The common architecture of cross-beta amyloid”, J. Mol. Biol., 395 (2010) 717, http://www.ncbi.nlm.nih.gov/pubmed/19781557.

    Article  Google Scholar 

  121. Van Dyck D. and Chen F.-R., “‘Big Bang’ tomography as a new route to atomic-resolution electron tomography”, Nature, 486 (2012) 243, http://www.ncbi.nlm.nih.gov/pubmed/22699616.

    Article  ADS  Google Scholar 

  122. Ophus C., Ciston J., Pierce J., Harvey T. R., Chess J., McMorran B. J., Czarnik C., Rose H. H. and Ercius P., “Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry”, Nat. Commun., 7 (2016) 10719, http://www.nature.com/ncomms/2016/160229/ncomms10719/full/ncomms10719.html.

    Article  ADS  Google Scholar 

  123. Mohri K., Kusuki E., Ohtsuki S., Takahashi N., Endo M., Hidaka K., Sugiyama H., Takahashi Y., Takakura Y. and Nishikawa M., “Self-Assembling DNA Dendrimer for Effective Delivery of Immunostimulatory CpG DNA to Immune Cells”, Biomacromolecules, 16 (2015) 1095.

    Article  Google Scholar 

  124. Marini M., Piantanida L., Musetti R., Bek A., Dong M., Besenbacher F., Lazzarino M. and Firrao G., “A revertible, autonomous, self-assembled DNA-origami nanoactuator”, Nano Lett., 11 (2011) 5449, http://www.ncbi.nlm.nih.gov/pubmed/22047682.

    Article  ADS  Google Scholar 

  125. Piantanida L., Naumenko D., Torelli E., Marini M., Bauer D. M., Fruk L., Firrao G. and Lazzarino M., “Plasmon resonance tuning using DNA origami actuation”, Chem. Commun., 51 (2015) 4789.

    Article  Google Scholar 

  126. Torelli E., Marini M., Palmano S., Piantanida L., Polano C., Scarpellini A., Lazzarino M. and Firrao G., “A DNA origami nanorobot controlled by nucleic acid hybridization”, Small, 10 (2014) 2918.

    Article  Google Scholar 

  127. Yan H., Zhang X., Shen Z. and Seeman N. C., “A robust DNA mechanical device controlled by hybridization topology”, Nature, 415 (2002) 62.

    Article  ADS  Google Scholar 

  128. Manuscript A. and Malignancies H., “Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies”, Sci. Transl. Med., 6 (2014) 224ra24.

    Article  Google Scholar 

  129. Gray E. S., Rizos H., Reid A. L., Boyd S. C., Pereira M. R., Lo J., Tembe V., Freeman J., Lee J. H. J., Scolyer R. A., Siew K., Lomma C., Cooper A., Khattak M. A., Meniawy T. M. Long, G. V., Carlino M. S., Millward M. and Ziman M., “Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma”, Oncotarget, 6 (2015) 42008, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4747205&tool=pmcentrez&rendertype=abstract.

    Google Scholar 

  130. Aarthy R., Mani S., Velusami S., Sundarsingh S. and Rajkumar T., “Role of Circulating Cell-Free DNA in Cancers”, Mol. Diagnosis Ther., 19 (2015) 339.

    Article  Google Scholar 

  131. Bellassai N. and Spoto G., “Biosensors for liquid biopsy: circulating nucleic acids to diagnose and treat cancer”, Anal. Bioanal. Chem., 408 (2016) 1.

    Article  Google Scholar 

  132. Dinakaran V., Rathinavel A., Pushpanathan M., Sivakumar R., Gunasekaran P. and Rajendhran J., “Elevated levels of circulating DNA in cardiovascular disease patients: metagenomic profiling of microbiome in the circulation”, PLoS One., 9 (2014) e105221.

    Article  ADS  Google Scholar 

  133. Bakir M., Engin A., Kuskucu M. A., Bakir S., Gündag O. and Midilli K., “Relationship of Plasma Cell-Free DNA Level With Mortality and Prognosis in Patients With Crimean-Congo Hemorrhagic Fever”, J. Med. Virol., 88 (2016) 1152.

    Article  Google Scholar 

  134. Basak R., Nair N. K. and Mittra I., “Evidence for cell-free nucleic acids as continuously arising endogenous DNA mutagens”, Mutat. Res. Mol. Mech. Mutagen., 793 (2016) 15, http://dx.doi.org/10.1016/j.mrfmmm.2016.10.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marini, M., Limongi, T., Moretti, M. et al. The structure of DNA by direct imaging and related topics. Riv. Nuovo Cim. 40, 241–277 (2017). https://doi.org/10.1393/ncr/i2017-10135-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2017-10135-7

Navigation