Skip to main content
Log in

Tunable few-optical cycle pulses and advanced ultrafast spectroscopic techniques

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

Continuous progress in the development of light sources for the generation of tunable ultrashort pulses from the near-infrared to all the visible range provides a very efficient tool for spectroscopic techniques able to follow ultrafast dynamical processes in matter. Second-order nonlinear optical processes like Optical Parametric Amplification (OPA) have demonstrated the capability of generating light pulses with durations down to few cycles of the carrier wave. The aim of this paper is to introduce the basic concepts for the generation of tunable ultrashort pulses and show their application to ultrafast spectroscopy. We will discuss the principles of parametric amplification and the main criteria for the design of broadband OPAs; we will also illustrate some of the schemes providing ultrashort pulses in the spectral ranges from the ultraviolet to the infrared, offering a comprehensive overview of the state of the art of the current research activity in this rapidly evolving field. An important requirement for the applications of ultrashort pulses is the capability to measure the amplitude and phase of their electric field; we will discuss a rich ensemble of spectrographic, interferometric or phase-scanning techniques for the temporal characterization of ultrashort pulses. Pump-probe techniques with broadband pulses and more recently two-dimensional spectroscopic techniques allow to follow in great detail complex dynamical processes. The few examples reported in this review just provide a sample of what is already a vast class of ultrafast phenomena, which can be studied nowadays in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed H. Zewail, Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond, J. Phys. Chem. A, 104 (2000) 5660.

    Article  Google Scholar 

  2. Fork R. L., Greene B. I. and Shank C. V., Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking, Appl. Phys. Lett., 38 (1981) 671.

    Article  ADS  Google Scholar 

  3. Knox W. H., Downer M. C., Fork R. L. and Shank C. V., Amplified femtosecond optical pulses and continuum generation at 5-kHz repetition rate, Opt. Lett., 9 (1984) 552.

    Article  ADS  Google Scholar 

  4. Fork R. L., Brito Cruz C. H., Becker P. C. and Shank C. V., Compression of optical pulses to six femtoseconds by using cubic phase compensation, Opt. Lett., 12 (1987) 483.

    Article  ADS  Google Scholar 

  5. Moulton P. F., Spectroscopic and laser characteristics of Ti:Al2O3, J. Opt. Soc. Am. B, 3 (1986) 125.

    Article  ADS  Google Scholar 

  6. Spence D. E., Kean P. N. and Sibbett W., 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser, Opt. Lett., 16 (1991) 42.

    Article  ADS  Google Scholar 

  7. Donna Strickland and Gerard Mourou, Compression of amplified chirped optical pulses, Opt. Commun., 56 (1985) 219.

    Article  ADS  Google Scholar 

  8. Backus S., Durfee C. G., Murnane M. M. and Kapteyn H. C., High power ultrafast lasers, Rev. Sci. Instrum., 69 (1998) 1207.

    Article  ADS  Google Scholar 

  9. Joseph Anthony Giordmaine and Robert C. Miller, Tunable coherent parametric oscillation in LiNbO3 at optical frequencies, Phys. Rev. Lett., 14 (1965) 973.

    Article  ADS  Google Scholar 

  10. Robin M. Hochstrasser, Two-dimensional spectroscopy at infrared and optical frequencies, Proc. Natl. Acad. Sci. U.S.A., 104 (2007) 14190.

    Article  ADS  Google Scholar 

  11. Shaul Mukamel, Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations, Annu. Rev. Phys. Chem., 51 (2000) 691.

    Article  ADS  Google Scholar 

  12. Murray K. Reed, Michael K. Steiner-Shepard and Daniel K. Negus, Widely tunable femtosecond optical parametric amplifier at 250 kHz with a Ti:sapphire regenerative amplifier, Opt. Lett., 19 (1994) 1855.

    Article  ADS  Google Scholar 

  13. Bradler M., Baum P. and Riedle E., Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses, Appl. Phys. B, 97 (2009) 561.

    Article  ADS  Google Scholar 

  14. Brida D., Manzoni C., Cirmi G., Marangoni M., Bonora S., Villoresi P., De Silvestri S. and Cerullo G., Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers, J. Opt., 12 (2010) 013001.

    Article  ADS  Google Scholar 

  15. Mücke O. D., Tritschler T. and Wegener M., Few-cycle laser pulse generation and its applications, Topics Appl. Phys., 95 (2004) 379.

    Article  Google Scholar 

  16. Shen Y. R., Principles of nonlinear optics (Wiley-Interscience, New York) 1984.

    Google Scholar 

  17. Robert W. Boyd, Nonlinear Optics (Academic Press) 2003.

  18. Gunnar Arisholm, General numerical methods for simulating second-order nonlinear interactions in birefringent media, J. Opt. Soc. Am. B, 14 (1997) 2543.

    Article  ADS  Google Scholar 

  19. Manzoni C., Cirmi G., Brida D., De Silvestri S. and Cerullo G., Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties, Phys. Rev. A, 79 (2009) 033818.

    Article  ADS  Google Scholar 

  20. Lang T., Harth A., Matyschok J., Binhammer T., Schultze M. and Morgner U., Impact of temporal, spatial and cascaded effects on the pulse formation in ultra-broadband parametric amplifiers, Opt. Express, 21 (2013) 949.

    Article  ADS  Google Scholar 

  21. Yakovlev V. V., Kohler B. and Wilson K. R., Broadly tunable 30-fs pulses produced by optical parametric amplification, Opt. Lett., 19 (1994) 2000.

    Article  ADS  Google Scholar 

  22. Armstrong J. A., Bloembergen N., Ducuing J. and Pershan P. S., Interactions between Light Waves in a Nonlinear Dielectric, Phys. Rev., 127 (1962) 1918.

    Article  ADS  Google Scholar 

  23. Valentin G. Dmitriev, Gagik G. Gurzadyan, David N. Nikogosyan and Helmut K. V. Lotsch, Optics of Nonlinear Crystals, in Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer, Berlin, Heidelberg) 1999, pp. 3–66.

    Chapter  Google Scholar 

  24. David S. Hum and Martin M. Fejer, Quasi-phasematching, C. R. Acad. Sci. Paris, 8 (2007) 180.

    Google Scholar 

  25. Manzoni C. and Cerullo G., Design criteria for ultrafast optical parametric amplifiers, J. Opt., 18 (2016) 103501.

    Article  ADS  Google Scholar 

  26. Nisoli M., Danielius R., Piskarskas A., De Silvestri S., Magni V., Valiulis G., Varanavicius A. and Svelto O., Highly efficient parametric conversion of femtosecond Ti:sapphire laser pulses at 1 kHz, Opt. Lett., 19 (1994) 1973.

    Article  ADS  Google Scholar 

  27. Giulio Cerullo and Sandro De Silvestri, Ultrafast optical parametric amplifiers, Rev. Sci. Instrum., 74 (2003) 1.

    Article  ADS  Google Scholar 

  28. Harris S. E., Oshman M. K. and Byer R. L., Observation of Tunable Optical Parametric Fluorescence, Phys. Rev. Lett., 18 (1967) 732.

    Article  ADS  Google Scholar 

  29. Marco Marangoni, Roberto Osellame, Roberta Ramponi, Giulio Cerullo, Andy Steinmann and Uwe Morgner, Near-infrared optical parametric amplifier at 1MHz directly pumped by a femtosecond oscillator, Opt. Lett., 32 (2007) 1489.

    Article  ADS  Google Scholar 

  30. Heiko Linnenbank and Stefan Linden, High repetition rate femtosecond double pass optical parametric generator with more than 2W tunable output in the NIR, Opt. Express, 22 (2014) 18072.

    Article  ADS  Google Scholar 

  31. Robert R. Alfano, The Supercontinuum Laser Source (Springer) 2013.

  32. Jinendra K. Ranka and Alexander L. Gaeta, Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses, Opt. Lett., 23 (1998) 534.

    Article  ADS  Google Scholar 

  33. Alexander L. Gaeta, Catastrophic Collapse of Ultrashort Pulses, Phys. Rev. Lett., 84 (2000) 3582.

    Article  ADS  Google Scholar 

  34. Jukna V., Galinis J., Tamosauskas G., Majus D. and Dubietis A., Infrared extension of femtosecond supercontinuum generated by filamentation in solid-state media, Appl. Phys. B, 116 (2014) 477.

    Article  ADS  Google Scholar 

  35. Robert Huber, Helmut Satzger, Wolfgang Zinth and Josef Wachtveitl, Noncollinear optical parametric amplifiers with output parameters improved by the application of a white light continuum generated in CaF2, Opt. Commun., 194 (2001) 443.

    Article  ADS  Google Scholar 

  36. Pergament M., Kellert M., Kruse K., Wang J., Palmer G., Wissmann L., Wegner U. and Lederer M. J., High power burst-mode optical parametric amplifier with arbitrary pulse selection, Opt. Express, 22 (2014) 22202.

    Article  ADS  Google Scholar 

  37. Murray K. Reed, Michael S. Armas, Michael K. Steiner-Shepard and Daniel K. Negus, 30-fs pulses tunable across the visible with a 100-kHz Ti:sapphire regenerative amplifier, Opt. Lett., 20 (1995) 605.

    Article  ADS  Google Scholar 

  38. Scott R. Greenfield and Michael R. Wasielewski, Near-transform-limited visible and near-IR femtosecond pulses from optical parametric amplification using Type II β-barium borate, Opt. Lett., 20 (1995) 1394.

    Article  ADS  Google Scholar 

  39. Di Trapani P., Andreoni A., Solcia C., Banfi G. P., Danielius R., Piskarskas A. and Foggi P., Powerful sub-100-fs pulses broadly tunable in the visible from a blue-pumped parametric generator and amplifier, J. Opt. Soc. Am. B, 14 (1997) 1245.

    Article  ADS  Google Scholar 

  40. Thomas S. Sosnowski, Paul B. Stephens and Theodore B. Norris, Production of 30-fs pulses tunable throughout the visible spectral region by a new technique in optical parametric amplification, Opt. Lett., 21 (1996) 140.

    Article  ADS  Google Scholar 

  41. Wong K. S., Qui Z. R., Wang H. and Wong G. K. L., Efficient visible femtosecond optical parametric generator and amplifier using tilted pulse-front pumping, Opt. Lett., 22 (1997) 898.

    Article  ADS  Google Scholar 

  42. Golubovic B. and Reed M. K., All-solid-state generation of 100-kHz tunable mid-infrared 50-fs pulses in type I and type II AgGaS2, Opt. Lett., 23 (1998) 1760.

    Article  ADS  Google Scholar 

  43. Cerullo G., Nisoli M., Stagira S. and De Silvestri S., Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible, Opt. Lett., 23 (1998) 1283.

    Article  ADS  Google Scholar 

  44. Shirakawa A., Sakane I., Takasaka M. and Kobayashi T., Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification, Appl. Phys. Lett., 74 (1999) 2268.

    Article  ADS  Google Scholar 

  45. Zavelani-Rossi M., Cerullo G., De Silvestri S., Gallmann L., Matuschek N., Steinmeyer G., Keller U., Angelow G., Scheuer V. and Tschudi T., Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors, Opt. Lett., 26 (2001) 1155.

    Article  ADS  Google Scholar 

  46. Peter Baum, Markus Breuer, Eberhard Riedle and Günter Steinmeyer, Brewster-angled chirped mirrors for broadband pulse compression without dispersion oscillations, Opt. Lett., 31 (2006) 2220.

    Article  ADS  Google Scholar 

  47. Wilhelm T., Piel J. and Riedle E., Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter, Opt. Lett., 22 (1997) 1494.

    Article  ADS  Google Scholar 

  48. Giulio Cerullo, Mauro Nisoli and Sandro De Silvestri, Generation of 11 fs pulses tunable across the visible by optical parametric amplification, Appl. Phys. Lett., 71 (1997) 3616.

    Article  ADS  Google Scholar 

  49. Akira Shirakawa and Takayoshi Kobayashi, Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm−1 bandwidth, Appl. Phys. Lett., 72 (1998) 147.

    Article  ADS  Google Scholar 

  50. Andrius Baltušska, Takao Fuji and Takayoshi Kobayashi, Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control, Opt. Lett., 27 (2002) 306.

    Article  ADS  Google Scholar 

  51. Cerullo G., Nisoli M., Stagira S., De Silvestri S., Tempea G., Krausz F. and Ferencz K., Mirror-dispersion-controlled sub-10-fs optical parametric amplifier in the visible, Opt. Lett., 24 (1999) 1529.

    Article  ADS  Google Scholar 

  52. Joosen W., Chambaret J. P., Antonetti A., Agostini P. and Petite G., Broadband femtosecond infrared parametric amplification in β-BaB2O4, Opt. Lett., 17 (1992) 133.

    Article  ADS  Google Scholar 

  53. Danielius R., Piskarskas A., Righini R., Banfi G. P., Di Trapani P. and Santa I., Tunable femtosecond pulses close to the transform limit from traveling-wave parametric conversion, Opt. Lett., 18 (1993) 1547.

    Article  ADS  Google Scholar 

  54. Banfi G. P., Danielius R., Di Trapani P., Foggi P., Righini R. and Piskarskas A., Femtosecond traveling-wave parametric generation with lithium triborate, Opt. Lett., 18 (1993) 1633.

    Article  ADS  Google Scholar 

  55. Seifert F., Petrov V. and Noack F., Sub-100-fs optical parametric generator pumped by a high-repetition-rate Ti:sapphire regenerative amplifier system, Opt. Lett., 19 (1994) 837.

    Article  ADS  Google Scholar 

  56. Petrov V., Seifert F. and Noack F., High repetition rate traveling wave optical parametric generator producing nearly bandwidth limited 50 fs infrared light pulses, Appl. Phys. Lett., 65 (1994) 268.

    Article  ADS  Google Scholar 

  57. Nisoli M., Stagira S., De Silvestri S., Svelto O., Valiulis G. and Varanavicius A., Parametric generation of high-energy 14.5-fs light pulses at 1.5 μm, Opt. Lett., 23 (1998) 630.

    Article  ADS  Google Scholar 

  58. Kent R. Wilson and Vladislav V. Yakovlev, Ultrafast rainbow: tunable ultrashort pulses from a solid-state kilohertz system, J. Opt. Soc. Am. B, 14 (1997) 444.

    Article  ADS  Google Scholar 

  59. Schibli T. R., Kuzucu O., Jung-Won Kim, Ippen E. P., Fujimoto J. G., Kaertner F. X., Scheuer V. and Angelow G., Toward single-cycle laser systems, IEEE J. Sel. Topics Quantum Electron., 9 (2003) 990.

    Article  ADS  Google Scholar 

  60. Rocio Borrego-Varillas, Aurelio Oriana, Federico Branchi, Sandro De Silvestri, Giulio Cerullo and Cristian Manzoni, Optimized ancillae generation for ultra-broadband two-dimensional spectral-shearing interferometry, J. Opt. Soc. Am. B, 32 (2015) 1851.

    Article  ADS  Google Scholar 

  61. Siddiqui A. M., Cirmi G., Brida D., Kärtner F. X. and Cerullo G., Generation of < 7 fs pulses at 800 nm from a blue-pumped optical parametric amplifier at degeneracy. Opt. Lett., 34 (2009) 3592.

    Article  ADS  Google Scholar 

  62. Schmidt C, Bühler J., Heinrich A.-C., Leitenstorfer A. and Brida D., Noncollinear parametric amplification in the near-infrared based on type-II phase matching, J. Opt., 17 (2015) 094003.

    Article  ADS  Google Scholar 

  63. Cirmi G., Brida D., Manzoni C., Marangoni M., De Silvestri S. and Cerullo G., Few-optical-cycle pulses in the near-infrared from a noncollinear optical parametric amplifier, Opt. Lett., 32 (2007) 2396.

    Article  ADS  Google Scholar 

  64. Erik Zeek, Kira Maginnis, Sterling Backus, Ulrich Russek, Margaret Murnane, Gérard Mourou, Henry Kapteyn and Gleb Vdovin, Pulse compression by use of deformable mirrors, Opt. Lett., 24 (1999) 493.

    Article  ADS  Google Scholar 

  65. Daniel J. Kane and Rick Trebino, Characterization of Arbitrary Femtosecond Pulses Using Frequency-Resolved Optical Gating, IEEE J. Quantum Electron., 29 (1993) 571.

    Article  ADS  Google Scholar 

  66. Ivaylo Nikolov, Alexander Gaydardzhiev, Ivan Buchvarov, Pancho Tzankov, Frank Noack and Valentin Petrov, Ultrabroadband continuum amplification in the near infrared using BiB3O6 nonlinear crystals pumped at 800 nm, Opt. Lett., 32 (2007) 3342.

    Article  ADS  Google Scholar 

  67. Backus S., Peatross J., Zeek Z., Rundquist A., Taft G., Murnane M. M. and Kapteyn H. C., 16-fs, 1-mJ ultraviolet pulses generated by third-harmonic conversion in air, Opt. Lett., 21 (1996) 665.

    Article  ADS  Google Scholar 

  68. Graf U., Fiess M., Schultze M., Kienberger R., Krausz F. and Goulielmakis E., Intense few-cycle light pulses in the deep ultraviolet, Opt. Express, 16 (2008) 18956.

    Article  ADS  Google Scholar 

  69. Florentin Reiter, Ulrich Graf, Martin Schultze, Wolfgang Schweinberger, Hartmut Schröder, Nicholas Karpowicz, Abdallah Mohammed Azzeer, Reinhard Kienberger, Ferenc Krausz and Eleftherios Goulielmakis, Generation of sub-3fs pulses in the deep ultraviolet, Opt. Lett., 35 (2010) 2248.

    Article  ADS  Google Scholar 

  70. Charles G. Durfee, Sterling Backus, Margaret M. Murnane and Henry C. Kapteyn, Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves, Opt. Lett., 22 (1997) 1565.

    Article  ADS  Google Scholar 

  71. Charles G. Durfee III, Sterling Backus, Henry C. Kapteyn and Margaret M. Murnane, Intense 8-fs pulse generation in the deep ultraviolet, Opt. Lett., 24 (1999) 697.

    Article  ADS  Google Scholar 

  72. Yuichiro Kida, Jun Liu, Takahiro Teramoto and Takayoshi Kobayashi, Sub-10fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing, Opt. Lett., 35 (2010) 1807.

    Article  ADS  Google Scholar 

  73. Rocio Borrego Varillas, Alessia Candeo, Daniele Viola, Marco Garavelli, Sandro De Silvestri, Giulio Cerullo and Cristian Manzoni, Microjoule-level, tunable sub-10fs UV pulses by broadband sum-frequency generation, Opt. Lett., 39 (2014) 3849.

    Article  ADS  Google Scholar 

  74. Peter Baum, Stefan Lochbrunner and Eberhard Riedle, Zero-additional-phase SPIDER: full characterization of visible and sub-20-fs ultraviolet pulses, Opt. Lett., 29 (2004) 210.

    Article  ADS  Google Scholar 

  75. Ursula Keller, Recent developments in compact ultrafast lasers, Nature, 424 (2003) 831.

    Article  ADS  Google Scholar 

  76. Steinmeyer G., Sutter Dh., Gallmann L., Matuschek N. and Keller U., Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics, Science, 286 (1999) 1507.

    Article  Google Scholar 

  77. Wendel Wohlleben, Tiago Buckup, Jennifer L. Herek and Marcus Motzkus, Coherent control for spectroscopy and manipulation of biological dynamics, Chem. Phys. Chem., 6 (2005) 850.

    Article  Google Scholar 

  78. Herschel Rabitz, Regina de Vivie-Riedle, Marcus Motzkus and Karl Kompa, Whither the Future of Controlling Quantum Phenomena?, Science, 288 (2000) 824.

    Article  ADS  Google Scholar 

  79. Shaul Mukamel, Principles of Nonlinear Optical Spectroscopy, Number 6, Oxford University Press on Demand, (1999).

  80. Krausz F. and Ivanov M., Attosecond physics, Rev. Mod. Phys., 81 (2009) 163.

    Article  ADS  Google Scholar 

  81. Ian A. Walmsley and Christophe Dorrer, Characterization of ultrashort electromagnetic pulses, Adv. Opt. Photon., 1 (2009) 308.

    Article  Google Scholar 

  82. Rick Trebino, Frequency-resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer Science & Business Media) 2012.

  83. Antoine Monmayrant, Sébastien Weber and Béatrice Chatel, A newcomer’s guide to ultrashort pulse shaping and characterization, J. Phys. B: At. Mol. Opt. Phys., 43 (2010) 103001.

    Article  ADS  Google Scholar 

  84. Peter R. Griffiths and James A. De Haseth, Fourier Transform Infrared Spectrometry, Vol. 171 (John Wiley & Sons) 2007.

  85. Andrew Weiner, Ultrafast Optics, Vol. 72 (John Wiley & Sons) 2011.

  86. Witold K. Surewicz, Henry H. Mantsch and Dennis Chapman, Determination of protein secondary structure by Fourier transform infrared spectroscopy: A critical assessment, Biochemistry, 32 (1993) 389.

    Article  Google Scholar 

  87. Lepetit L., Chériaux G. and Joffre M., Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy, J. Opt. Soc. Am. B, 12 (1995) 2467.

    Article  ADS  Google Scholar 

  88. Weber H. P., Method for pulsewidth measurement of ultrashort light pulses generated by phase-locked lasers using nonlinear optics, J. Appl. Phys., 38 (1967) 2231.

    Article  ADS  Google Scholar 

  89. Mindl T., Hefferle P., Schneider S. and Dorr F., Characterisation of a train of subpicosecond laser pulses by fringe resolved autocorrelation measurements, Appl. Phys. B, Photophys. Laser Chem., 31 (1983) 201.

    Article  ADS  Google Scholar 

  90. Blount E. I. and Klauder J. R., Recovery of laser intensity from correlation data, J. Appl. Phys., 40 (1969) 2874.

    Article  ADS  Google Scholar 

  91. Jean-Claude M. Diels, Joel J. Fontaine, Ian C. McMichael and Francesco Simoni, Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy, Appl. Opt., 24 (1985) 1270.

    Article  ADS  Google Scholar 

  92. Rick Trebino, Kenneth W. DeLong, David N. Fittinghoff, John N. Sweetser, Marco A. Krumbugel, Bruce A. Richman and Daniel J. Kane, Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating, Rev. Sci. Instrum., 68 (1997) 3277.

    Article  ADS  Google Scholar 

  93. Daniel J. Kane and Rick Trebino, Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating, Opt. Lett., 18 (1993) 823.

    Article  ADS  Google Scholar 

  94. Jerome Paye, Malini Ramaswamy, James G. Fujimoto and Erich P. Ippen, Measurement of the amplitude and phase of ultrashort light pulses from spectrally resolved autocorrelation, Opt. Lett., 18 (1993) 1946.

    Article  ADS  Google Scholar 

  95. Patrick O’Shea, Mark Kimmel, Xun Gu and Rick Trebino, Highly simplified device for ultrashort-pulse measurement, Opt. Lett., 26 (2001) 932.

    Article  ADS  Google Scholar 

  96. Linden S., Giessen H. and Khul J., XFROG — a new method for amplitude and phase characterization of weak ultrashort pulses, Phys. Status Solidi B, 206 (1998) 119.

    Article  ADS  Google Scholar 

  97. Duguay M. A. and Hansen J.-W., An ultrafast light gate, Appl. Phys. Lett., 15 (1969) 192.

    Article  ADS  Google Scholar 

  98. Rick Trebino and Daniel J. Kane, Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating, J. Opt. Soc. Am. A, 10 (1993) 1101.

    Article  ADS  Google Scholar 

  99. Kenneth W. DeLong, Rick Trebino and Daniel J. Kane, Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries, J. Opt. Soc. Am. B, 11 (1994) 1595.

    Article  ADS  Google Scholar 

  100. John N. Sweetser, David N. Fittinghoff and Rick Trebino, Transient-grating frequency-resolved optical gating, Opt. Lett., 22 (1997) 519.

    Article  ADS  Google Scholar 

  101. Froehly C. L., Lacourt A. and Vienot J. Ch., Time impulse response and time frequency response of optical pupils.: Experimental confirmations and applications, Nouv. Rev. Optique, 183 (1973) 183.

    Article  ADS  Google Scholar 

  102. Chris Iaconis and Ian A. Walmsley, Spectral phase interferometry for direct electricfield reconstruction of ultrashort optical pulses, Opt. Lett., 23 (1998) 792.

    Article  ADS  Google Scholar 

  103. Anderson M. E., Monmayrant A., Gorza Simon-Pierre, Wasylczyk P. and Ian A. Walmsley, SPIDER: A decade of measuring ultrashort pulses, Laser Phys. Lett., 5 (2008) 259.

    Article  ADS  Google Scholar 

  104. Gallmann L., Sutter D. H., Matuschek N., Steinmeyer G. and Keller U., Techniques for the characterization of sub-10-fs optical pulses: A comparison, Appl. Phys. B: Lasers Optics, 70 (2000) 67.

    Article  ADS  Google Scholar 

  105. Peter Baum and Eberhard Riedle, Design and calibration of zero-additional-phase SPIDER, J. Opt. Soc. Am. B, 22 (2005) 1875.

    Article  ADS  Google Scholar 

  106. Ellen M. Kosik, Aleksander S. Radunsky, Ian A. Walmsley and Christophe Dorrer, Interferometric technique for measuring broadband ultrashort pulses at the sampling limit, Opt. Lett., 30 (2005) 326.

    Article  ADS  Google Scholar 

  107. Adam S. Wyatt, Ian A. Walmsley, Gero Stibenz and Günter Steinmeyer, Sub-10fs pulse characterization using spatially encoded arrangement for spectral phase interferometry for direct electric field reconstruction, Opt. Lett., 31 (2006) 1914.

    Article  ADS  Google Scholar 

  108. Jonathan R. Birge, Richard Ell and Franz X. Kartner, Two-dimensional spectral shearing interferometry for few-cycle pulse characterization and optimization, Spring. Ser. Chem. Phys., 88 (2007) 160.

    Article  Google Scholar 

  109. Jonathan R. Birge, Helder M. Crespo and Franz X. Kartner, Theory and design of two-dimensional spectral shearing interferometry for few-cycle pulse measurement, J. Opt. Soc. Am. B, 27 (2010) 1165.

    Article  ADS  Google Scholar 

  110. Vadim V. Lozovoy, Igor Pastirk and Marcos Dantus, Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation, Opt. Lett., 29 (2004) 775.

    Article  ADS  Google Scholar 

  111. Bingwei Xu, Jess M. Gunn, Johanna M. Dela Cruz, Vadim V. Lozovoy and Marcos Dantus, Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses, J. Opt. Soc. Am. B, 23 (2006) 750.

    Article  ADS  Google Scholar 

  112. Francisco Silva, Miguel Miranda, Benjamín Alonso, Jens Rauschenberger, Vladimir Pervak and Helder Crespo, Simultaneous compression, characterization and phase stabilization of GW-level 14 cycle VIS-NIR femtosecond pulses using a single dispersion-scan setup, Opt. Express, 22 (2014) 10181.

    Article  ADS  Google Scholar 

  113. Miguel Miranda, Thomas Fordell, Cord Arnold, Anne L’Huillier and Helder Crespo, Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges, Opt. Express, 20 (2012) 688.

    Article  ADS  Google Scholar 

  114. Miguel Miranda, Cord L. Arnold, Thomas Fordell, Francisco Silva, Benjamín Alonso, Rosa Weigand, Anne L’Huillier and Helder Crespo, Characterization of broadband few-cycle laser pulses with the d-scan technique, Opt. Express, 20 (2012) 18732.

    Article  ADS  Google Scholar 

  115. Daniel E. Wilcox and Jennifer P. Ogilvie, Comparison of pulse compression methods using only a pulse shaper, J. Opt. Soc. Am. B, 31 (2014) 1544.

    Article  ADS  Google Scholar 

  116. Nicolas Forget, Vincent Crozatier and Thomas Oksenhendler, Pulsemeasurement techniques using a single amplitude and phase spectral shaper, J. Opt. Soc. Am. B, 27 (2010) 742.

    Article  ADS  Google Scholar 

  117. Vincent Loriot, Gregory Gitzinger and Nicolas Forget, Self-referenced characterization of femtosecond laser pulses by chirp scan, Opt. Express, 21 (2013) 24879.

    Article  ADS  Google Scholar 

  118. Dirk Spangenberg, Pieter Neethling, Erich Rohwer, Michael H. Brügmann and Thomas Feurer, Time-domain ptychography, Phys. Rev. A, 91 (2015) 021803.

    Article  ADS  MathSciNet  Google Scholar 

  119. Spangenberg D., Rohwer E., Brugmann M. H. and Feurer T., Ptychographic ultrafast pulse reconstruction, Opt. Lett., 40 (2015) 1002.

    Article  ADS  Google Scholar 

  120. Vardeny Z. and Tauc J., Picosecond coherence coupling in the pump and probe technique, Opt. Commun., 39 (1981) 396.

    Article  ADS  Google Scholar 

  121. Kovalenko S. A., Dobryakov A. L., Ruthmann J. and Ernsting N. P., Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing, Phys. Rev. A, 59 (1999) 2369.

    Article  ADS  Google Scholar 

  122. Cristian Manzoni, Roberto Osellame, Marco Marangoni, Marcel Schultze, Uwe Morgner and Giulio Cerullo, High-repetition-rate two-color pump-probe system directly pumped by a femtosecond ytterbium oscillator, Opt. Lett., 34 (2009) 620.

    Article  ADS  Google Scholar 

  123. Polli D., Brida D., Mukamel S., Lanzani G. and Cerullo G., Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses, Phys. Rev. A, 82 (2010) 053809.

    Article  ADS  Google Scholar 

  124. Paye J., The chronocyclic representation of ultrashort light pulses, IEEE J. Quantum Electron., 28 (1992) 2262.

    Article  ADS  Google Scholar 

  125. Hong K.-H., Kim J.-H., Kang Y.H. and Nam C.H., Time-frequency analysis of chirped femtosecond pulses using Wigner distribution function, Appl. Phys. B, 74 (2002) s231.

    Article  Google Scholar 

  126. Xiche Hu, Ana Damjanovi´c, Thorsten Ritz and Klaus Schulten, Architecture and mechanism of the light-harvesting apparatus of purple bacteria, Proc. Natl. Acad. Sci. U.S.A., 95 (1998) 5935.

    Article  ADS  Google Scholar 

  127. Harry A. Frank and Richard J. Cogdell, Carotenoids in Photosynthesis, Photochem. Photobiol., 63 (1996) 257.

    Article  Google Scholar 

  128. Eckhard Hofmann, Pamela M. Wrench, Frank P. Sharples, Roger G. Hiller, Wolfram Welte and Kay Diederichs, Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae, Science, 272 (1996) 1788.

    Article  ADS  Google Scholar 

  129. Hudson B. S. and Kohler B. E., A low-lying weak transition in the polyene α,ω-diphenyloctatetraene, Chem. Phys. Lett., 14 (1972) 299.

    Article  ADS  Google Scholar 

  130. Schulten K. and Karplus M., On the origin of a low-lying forbidden transition in polyenes and related molecules, Chem. Phys. Lett., 14 (1972) 305.

    Article  ADS  Google Scholar 

  131. Shreve A. P., Trautman J. K., Owens T. G. and Albrecht A. C., Determination of the S2 lifetime of β-carotene, Chem. Phys. Lett., 178 (1991) 89.

    Article  ADS  Google Scholar 

  132. Hideki Kandori, Hiroyuki Sasabe and Mamoru Mimuro, Direct Determination of a Lifetime of the S2 State of β-Carotene by Femtosecond Time-Resolved Fluorescence Spectroscopy, J. Am. Chem. Soc., 116 (1994) 2671.

    Article  Google Scholar 

  133. Alisdair N. Macpherson and Tomas Gillbro, Solvent Dependence of the Ultrafast S2− S1 Internal Conversion Rate of β-Carotene, J. Phys. Chem. A, 102 (1998) 5049.

    Article  Google Scholar 

  134. Marilena Ricci, Stephen E. Bradforth, Ralph Jimenez and Graham R. Fleming, Internal conversion and energy transfer dynamics of spheroidene in solution and in the LH-1 and LH-2 light-harvesting complexes, Chem. Phys. Lett., 259 (1996) 381.

    Article  ADS  Google Scholar 

  135. Brent P. Krueger, Gregory D. Scholes, Ralph Jimenez and Graham R. Fleming, Electronic Excitation Transfer from Carotenoid to Bacteriochlorophyll in the Purple Bacterium Rhodopseudomonas acidophila, J. Phys. Chem. B, 102 (1998) 2284.

    Article  Google Scholar 

  136. Alisdair N. Macpherson, Juan B. Arellano, Niall J. Fraser, Richard J. Cogdell and Tomas Gillbro, Efficient Energy Transfer from the Carotenoid {S2} State in a Photosynthetic Light-Harvesting Complex, Biophys. J., 80 (2001) 923.

    Article  Google Scholar 

  137. Richard J. Cogdell, Neil W. Isaacs, Tina D. Howard, Karen McLuskey, Niall J. Fraser and Stephen M. Prince, How photosynthetic bacteria harvest solar energy, J. Bacteriol., 181 (1999) 3869.

    Article  Google Scholar 

  138. Giulio Cerullo, Cristian Manzoni, Larry Luer¨ and Dario Polli, Time-resolved methods in biophysics. 4. Broadband pump-probe spectroscopy system with sub-20fs temporal resolution for the study of energy transfer processes in photosynthesis, Photochem. Photobiol. Sci., 6 (2007) 135.

    Article  Google Scholar 

  139. Schoenlein R. W., Peteanu L. A., Mathies R. A. and Shank C. V., The first step in vision: femtosecond isomerization of rhodopsin, Science, 254 (1991) 412.

    Article  ADS  Google Scholar 

  140. Birge R. R., Photophysics and Molecular Electronic Applications of the Rhodopsins, Ann. Rev. Phys. Chem., 41 (1990) 683.

    Article  ADS  Google Scholar 

  141. Flavio Lumento, Vinicio Zanirato, Stefania Fusi, Elena Busi, Loredana Latterini, Fausto Elisei, Adalgisa Sinicropi, Tadeusz Andruniów, Nicolas Ferré and Riccardo Basosiet al., Quantum chemical modeling and preparation of a biomimetic photochemical switch, Angew. Chem. Int. Ed., 46 (2007) 414.

    Article  Google Scholar 

  142. Adalgisa Sinicropi, Elena Martin, Mikhail Ryazantsev, Jan Helbing, Julien Briand, Divya Sharma, Jérémie Léonard, Stefan Haacke, Andrea Cannizzo, Majed Chergui, Vinicio Zanirato, Stefania Fusi, Fabrizio Santoro, Riccardo Basosi, Nicolas Ferré and Massimo Olivucci, An artificial molecular switch that mimics the visual pigment and completes its photocycle in picoseconds, Proc. Natl. Acad. Sci. U.S.A., 105 (2008) 17642.

    Article  ADS  Google Scholar 

  143. David J. Tannor, Introduction to Quantum Mechanics (University Science Books) 2007.

  144. Garavelli M., Celani P., Bernardi F., Robb M. A. and Olivucci M., The C5H6NH2+ Protonated Shiff Base: An ab Initio Minimal Model for Retinal Photoisomerization, J. Am. Chem. Soc., 119 (1997) 6891.

    Article  Google Scholar 

  145. Remedios González-Luque, Marco Garavelli, Fernando Bernardi, Manuela Merchan, Michael A. Robb and Massimo Olivucci, Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization, Proc. Natl. Acad. Sci. U.S.A., 97 (2000) 9379.

    Article  ADS  Google Scholar 

  146. Martin Klessinger and Josef Michl, Excited States and Photochemistry of Organic Molecules (Wiley-VCH) 1995.

  147. Benjamin G. Levine and Todd J. Martínez, Isomerization through conical intersections, Annu. Rev. Phys. Chem., 58 (2007) 613.

    Article  ADS  Google Scholar 

  148. Dario Polli, Piero Altoè, Oliver Weingart, Katelyn M. Spillane, Cristian Manzoni, Daniele Brida, Gaia Tomasello, Giorgio Orlandi, Philipp Kukura and Richard A. Mathieset al., Conical intersection dynamics of the primary photoisomerization event in vision, Nature, 467 (2010) 440.

    Article  ADS  Google Scholar 

  149. Brixner T., Tunable two-dimensional femtosecond spectroscopy, Opt. Lett., 29 (2004) 884.

    Article  ADS  Google Scholar 

  150. Daniele Brida, Cristian Manzoni and Giulio Cerullo, Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line, Opt. Lett., 37 (2012) 3027.

    Article  ADS  Google Scholar 

  151. Julien Réhault, Margherita Maiuri, Cristian Manzoni, Daniele Brida, Jan Helbing and Giulio Cerullo, 2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line, Opt. Express, 22 (2014) 9063.

    Article  ADS  Google Scholar 

  152. Larry Lüer, Sai Kiran Rajendran, Tatjana Stoll, Lucia Ganzer, Julien Réhault, David M. Coles, David George Lidzey, Tersilla Virgili and Giulio Cerullo, Lévy Defects in Matrix-Immobilized J Aggregates: Tracing Intra-and Inter-Segmental Exciton Relaxation, J. Phys. Chem. Lett., 8 (2017) 547.

    Article  Google Scholar 

  153. Igor Stiopkin, Tobias Brixner, Mino Yang and Graham R. Fleming, Heterogeneous exciton dynamics revealed by two-dimensional optical spectroscopy, J. Phys. Chem. B, 110 (2006) 20032.

    Article  Google Scholar 

  154. Mirjam van Burgel, Douwe A. Wiersma and Koos Duppen, The dynamics of one-dimensional excitons in liquids, J. Chem. Phys., 102 (1995) 20.

    Article  ADS  Google Scholar 

  155. Efros Al. L. and Rosen M., The Electronic Structure of Semiconductor Nanocrystals, Annu. Rev. Mater. Sci., 30 (2000) 475.

    Article  ADS  Google Scholar 

  156. Victor I. Klimov and Duncan W. McBranch, Femtosecond 1P-to-1S Electron Relaxation in Strongly Confined Semiconductor Nanocrystals, Phys. Rev. Lett., 80 (1998) 4028.

    Article  ADS  Google Scholar 

  157. Klimov V. I., Mikhailovsky A. A., McBranch D. W., Leatherdale C. A. and Bawendi M. G., Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots, Science, 287 (2000) 1011.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cerullo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Silvestri, S., Manzoni, C., Borrego-Varillas, R. et al. Tunable few-optical cycle pulses and advanced ultrafast spectroscopic techniques. Riv. Nuovo Cim. 41, 1–70 (2018). https://doi.org/10.1393/ncr/i2017-10143-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2017-10143-7

Navigation