Skip to main content

Advertisement

Log in

Charged lepton flavour violation: An experimental and theoretical introduction

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

Charged lepton flavour-violating transitions would be a clear signal of new physics beyond the Standard Model. Their search has been carried out in a variety of channels, the most sensitive being those involving a muon: however no positive evidence has been found so far. The MEG experiment has recently set the best limit on such processes by investigating the existence of the μ → eγ decay. In the next decade several experiments are planned to pursue the search for ßeγ, μ →> eee, μe conversion in nuclei, as well as on processes involving the τ, to an unprecedented level of precision. In this review we want to give a pedagogical introduction on the theoretical motivations for such searches as well as on the experimental aspects upon which they are based.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Conversi M., Pancini E. and Piccioni O., “On The Disintegration Of Negative Mesons”, Phys. Rev., 71 (1947) 209.

    Article  ADS  Google Scholar 

  2. Neddermeyer S. H. and Anderson C. D., “Note on the Nature of Cosmic Ray Particles”, Phys. Rev., 51 (1937) 884.

    Article  ADS  Google Scholar 

  3. Yukawa H., “On the Interaction of Elementary Particles I”, Proc. Phys. Math. Soc. Jpn., 17 (1935) 48. [Prog. Theor. Phys. Suppl. 1 1].

    MATH  Google Scholar 

  4. Lattes C. M. G., Muirhead H., Occhialini G. P. S. and Powell C. F., “Processes Involving Charged Mesons”, Nature, 159 (1947) 694.

    Article  ADS  Google Scholar 

  5. The original of the letter (in Italian) can be found in the Archives at the Library of the Scuola Normale Superiore di Pisa, Italy, Fondo Gian Carlo Wick (http://centroarchivistico.sns.it/index.php?id=145).

  6. Pais Abraham, Inward Bound (Oxford University Press, Oxford) 1986, Chapter 20.

    Google Scholar 

  7. Rochester G. D. and Butler C. C., “Evidence for the Existence of New Unstable Elementary Particles”, Nature, 160 (1947) 855.

    Article  ADS  Google Scholar 

  8. Powell C. F., Rep. Progr. Phys., 13 (1950) 350.

    Article  ADS  Google Scholar 

  9. Michel L., “Interaction between four half spin particles and the decay of the μ meson”, Proc. Phys. Soc. A, 63 (1950) 514.

    Article  ADS  MATH  Google Scholar 

  10. Konopinski E. J. and Mahmoud H. M., “The Universal Fermi interaction”, Phys. Rev., 92 (1953) 1045.

    Article  ADS  MATH  Google Scholar 

  11. Glashow S. L., Iliopoulos J. and Maiani L., “Weak Interactions with Lepton-Hadron Symmetry”, Phys. Rev. D, 2 (1970) 1285.

    Article  ADS  Google Scholar 

  12. Lokonathan S. and Steinberger J., “Search for Improbable Muon Decays”, Phys. Rev., 98 (1955) 240.

    Google Scholar 

  13. Feinberg G., Phys. Rev., 110 (1958) 1482.

    Article  ADS  Google Scholar 

  14. Pontecorvo B., “Electron and Muon Neutrinos”, Sov. Phys. JETP, 10 (1960) 1236. (Zh. Eksp. Teor. Fiz., 37 (1959) 1751).

    Google Scholar 

  15. Danby G., Gaillard J. M., Goulianos K., Lederman L. M., Mistry N., Schwartz M. and Steinberger J., Phys. Rev. Lett., 9 (1962) 36.

    Article  ADS  Google Scholar 

  16. Pontecorvo B. M., “Neutrino Experiments and the Problem of Conservation of Leptonic Charge”, JETP, 26 (1968) 984 (Russian original — Zh. Eksp. Teor. Fiz., 53 (1968) 1717).

    ADS  Google Scholar 

  17. Cabibbo N., “Unitary Symmetry and Leptonic Decays”, Phys. Rev. Lett., 10 (1963) 531.

    Article  ADS  Google Scholar 

  18. Christenson J. H., Cronin J. W., Fitch V. L. and Turlay R., “Evidence for the 2Π Decay of the K{2/°} Meson”, Phys. Rev. Lett., 13 (1964) 138.

    Article  ADS  Google Scholar 

  19. Kobayashi M. and Maskawa T., “CP-Violation in the Renormalizable Theory of Weak Interaction”, Prog. Theor. Phys., 49 (1973) 652.

    Article  ADS  Google Scholar 

  20. Bouchiat C., Iliopoulos J. and Meyer P., “An Anomaly Free Version of Weinberg’s Model”, Phys. Lett. B, 38 (1972) 519.

    Article  ADS  Google Scholar 

  21. Herb S. W., Hom D. C., Lederman L. M., Sens J. C., Snyder H. D., Yoh J. K., Appel J. A., Brown B. C., Brown C. N., Innes W. R., Ueno K., Yamanouchi T., Ito A. S., Jöstlein H., Kaplan D. M. and Kephart R. D., Phys. Rev. Lett., 39 (1977) 252.

    Article  ADS  Google Scholar 

  22. Abe F. et al. (CDF Collaboration), “Observation of Top Quark Production in pp Collisions with the Collider Detector at Fermilab”, Phys. Rev. Lett., 74 (1995) 2626.

    Article  ADS  Google Scholar 

  23. Abachi S. et al. (DØ Collaboration), “Search for High Mass Top Quark Production in p¯p Collisions at \(\sqrt s = 1.8\;{\rm{TeV}}\)”, Phys. Rev. Lett., 74 (1995) 2422.

    Article  ADS  Google Scholar 

  24. Kodama K. et al. (DONUT Collaboration), “Observation of tau neutrino interactions”, Phys. Lett. B, 504 (2001) 218 [hep-ex/0012035].

    Article  ADS  Google Scholar 

  25. Fukuda Y. et al. (Super-Kamiokande Collaboration), “Evidence for oscillation of atmospheric neutrinos”, Phys. Rev. Lett., 81 (1998) 1562 [hep-ex/9807003].

    Article  ADS  Google Scholar 

  26. Ahmad Q. R. et al. (SNO Collaboration), “Measurement of the rate of νe + dp + p+e interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory”, Phys. Rev. Lett., 87 (2001) 071301 [nucl-ex/0106015].

    Article  ADS  Google Scholar 

  27. Ahmad Q. R. et al. (SNO Collaboration), “Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory”, Phys. Rev. Lett., 89 (2002) 011301 [nucl-ex/0204008].

    Article  ADS  Google Scholar 

  28. Lindner M., Platscher M. and Queiroz F. S., “A Call for New Physics: The Muon Anomalous Magnetic Moment and Lepton Flavor Violation”, arXiv:1610.06587 [hep-ph].

  29. de Gouvea A. and Vogel P., “Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model”, Prog. Part. Nucl. Phys., 71 (2013) 75 [arXiv:1303.4097 [hep-ph]].

    Article  ADS  Google Scholar 

  30. Marciano W. J., Mori T. and Roney J. M., “Charged Lepton Flavor Violation Experiments”, Rev. Nucl. Part. Sci., 58 (2008) 315.

    Article  ADS  Google Scholar 

  31. Mori T. and Ootani W., “Flavour violating muon decays”, Prog. Part. Nucl. Phys., 79 (2014) 57.

    Article  ADS  Google Scholar 

  32. Bernstein R. H. and Cooper P. S., “Charged Lepton Flavor Violation: An Experimenter’s Guide”, Phys. Rep., 532 (2013) 27 [arXiv:1307.5787 [hep-ex]].

    Article  ADS  Google Scholar 

  33. Cei F. and Nicolò D., “Lepton Flavour Violation Experiments”, Adv. High Energy Phys., 2014 (2014) 282915.

    Article  Google Scholar 

  34. Ootani W., “An Experimental Review of Charged Lepton Flavor Violation in Muon Channel”, J. Phys. Soc. Jpn., 85 (2016) 091002.

    Article  ADS  Google Scholar 

  35. Mihara S., Miller J. P., Paradisi P. and Piredda G., “Charged Lepton Flavor-Violation Experiments”, Annu. Rev. Nucl. Part. Sci., 63 (2013) 531.

    Article  ADS  Google Scholar 

  36. Kuno Y. and Okada Y., “Muon decay and physics beyond the standard model”, Rev. Mod. Phys., 73 (2001) 151 [arXiv:hep-ph/9909265].

    Article  ADS  Google Scholar 

  37. Raidal M. et al., “Flavour physics of leptons and dipole moments”, Eur. Phys. J. C, 57 (2008) 13 [arXiv:0801.1826 [hep-ph]].

    Article  ADS  Google Scholar 

  38. Gorringe T. P. and Hertzog D. W., “Precision Muon Physics”, Prog. Part. Nucl. Phys., 84 (2015) 73 [arXiv:1506.01465 [hep-ex]].

    Article  ADS  Google Scholar 

  39. Bilenky S. M. and Petcov S. T., “Massive Neutrinos and Neutrino Oscillations”, Rev. Mod. Phys., 59 (1987) 671 [Erratum: Rev. Mod. Phys., 61 (1989) 169] [Erratum: Rev. Mod. Phys., 60 (1988) 575].

    Article  ADS  Google Scholar 

  40. Berg F. et al., “Target Studies for Surface Muon Production”, Phys. Rev. Accel. Beams, 19 (2016) 024701 [arXiv:1511.01288 [physics.ins-det]].

    Article  ADS  Google Scholar 

  41. Bueno J. F. et al. (TWIST Collaboration), “Precise measurement of parity violation in polarized muon decay”, Phys. Rev. D, 84 (2011) 032005 [arXiv:1104.3632 [hep-ex]].

    Article  ADS  Google Scholar 

  42. Cook S., D’Arcy R., Fukuda M., Hatanaka K., Hino Y., Kuno Y., Lancaster M., Mori Y., Nam T. H., Ogitsu T. et al., J. Phys.: Conf. Ser., 408 (2013) 012079.

    Google Scholar 

  43. Nelson G., Reilly D., “Gamma-Ray Interactions with Matter”, in Passive Nondestructive Analysis of Nuclear Materials, Los Alamos National Laboratory, NUREG/CR-5550, LAUR-90-732, 1991, pp. 27–42.

  44. Seltzer S. M. and Berger M. J., Nucl. Instrum. Methods Phys. Res. B, 12 (1985) 95.

    Article  ADS  Google Scholar 

  45. Pifer A. et al., Nucl. Instrum. Methods Phys. Res., 135 (1976) 39.

    Article  ADS  Google Scholar 

  46. Blondel A. et al., Research Proposal for an Experiment to Search for the Decay μeee, arXiv:1301.6113.

  47. Mu3e Collaboration, Berger N., “The Mu3e Experiment”, Nucl. Phys. Proc. Suppl. 248 (2014) 35.

    Google Scholar 

  48. Fael M. and Greub C., “Next-to-leading order prediction for the decay μ → e(e+e) νν”, JHEP, 1701 (2017) 084 [arXiv:1611.03726 [hep-ph]].

    Article  ADS  MATH  Google Scholar 

  49. Baldini A. M. et al. (MEG Collaboration), “Search for the lepton flavour violating decay μ+ → e+γ with the full dataset of the MEG experiment”, Eur. Phys. J. C, 76 (2016) 434 [arXiv:1605.05081 [hep-ex]].

    Article  ADS  Google Scholar 

  50. Bellgardt U. et al. (SINDRUM Collaboration), “Search for the Decay mu+ → e + e + e−”, Nucl. Phys. B, 299 (1988) 1.

    Article  ADS  Google Scholar 

  51. Wintz P., in “Proceedings of the First International Symposium on Lepton and Baryon Number Violation”, edited by Klapdor-Kleingrothaus H. V. and Krivosheina I. V. (IOP Publishing, 1988) p. 534.

  52. Honecker W. et al. (SINDRUM II Collaboration), Phys. Rev. Lett., 76 (1996) 200.

    Article  ADS  Google Scholar 

  53. Kaulard J. et al. (SINDRUM II Collaboration), Phys. Lett. B, 422 (1998) 334.

    Article  ADS  Google Scholar 

  54. Bertl W. H. et al. (SINDRUM II Collaboration), “A Search for muon to electron conversion in muonic gold”, Eur. Phys. J. C, 47 (2006) 337.

    Article  ADS  Google Scholar 

  55. Willmann L. et al., “New bounds from searching for muonium to anti-muonium conversion”, Phys. Rev. Lett., 82 (1999) 49 [hep-ex/9807011].

    Article  ADS  Google Scholar 

  56. Aubert B. et al. (BaBar Collaboration), “Searches for Lepton Flavor Violation in the Decays τ±e±γ and τ± →μ±γ”, Phys. Rev. Lett., 104 (2010) 021802. [arXiv:0908.2381 [hep-ex]].

    Article  ADS  Google Scholar 

  57. Hayasaka K. et al., “Search for Lepton Flavor Violating τ Decays into Three Leptons with 719 Million Produced Τ+Τ− Pairs”, Phys. Lett. B, 687 (2010) 139 [arXiv:1001.3221 [hep-ex]].

    Article  ADS  Google Scholar 

  58. Miyazaki Y. et al. (Belle Collaboration), “Search for lepton flavor violating τ decays into η, ℓη′ and ”, Phys. Lett. B, 648 (2007) 341 [hep-ex/0703009 [HEP-EX]].

    Article  ADS  Google Scholar 

  59. Aubert B. et al. (BaBar Collaboration), “Search for Lepton Flavor Violating Decays τ±±Π0, ±η, ℓ±η’”, Phys. Rev. Lett., 98 (2007) 061803 [hep-ex/0610067].

    Article  ADS  Google Scholar 

  60. Miyazaki Y. et al. (Belle Collaboration), “Search for Lepton-Flavor-Violating tau Decays into a Lepton and a Vector Meson”, Phys. Lett. B, 699 (2011) 251 [arXiv:1101.0755 [hep-ex]].

    Article  ADS  Google Scholar 

  61. Abouzaid E. et al. (KTeV Collaboration), “Search for lepton flavor violating decays of the neutral kaon”, Phys. Rev. Lett., 100 (2008) 131803 [arXiv:0711.3472 [hep-ex]].

    Article  ADS  Google Scholar 

  62. Ambrose D. et al. (BNL Collaboration), “New limit on muon and electron lepton number violation from K{L/0} → μ±e± decay”, Phys. Rev. Lett., 81 (1998) 5734 [hep-ex/9811038].

    Article  ADS  Google Scholar 

  63. Sher A. et al., “An Improved upper limit on the decay K+ → π+ μ+e”, Phys. Rev. D, 72 (2005) 012005 [hep-ex/0502020].

    Article  ADS  Google Scholar 

  64. Ablikim M. et al. (BESIII Collaboration), “Search for the lepton flavor violation process J/ψ at BESIII”, Phys. Rev. D, 87 (2013) 112007 [arXiv:1304.3205 [hep-ex]].

    Article  ADS  Google Scholar 

  65. Ablikim M. et al. (BES Collaboration), “Search for the lepton flavor violation processes J/ψμτ and eτ”, Phys. Lett. B, 598 (2004) 172 [hep-ex/0406018].

    Google Scholar 

  66. Aubert B. et al. (BaBar Collaboration), “Measurements of branching fractions, rate asymmetries, and angular distributions in the rare decays BKℓ+ and BK*ℓ+”, Phys. Rev. D, 73 (2006) 092001 [hep-ex/0604007].

    Article  ADS  Google Scholar 

  67. Lees J. P. et al. (BaBar Collaboration), “A search for the decay modes B± → h±τ±”, Phys. Rev. D, 86 (2012) 012004 [arXiv:1204.2852 [hep-ex]].

    Article  ADS  Google Scholar 

  68. Aaij R. et al. (LHCb Collaboration), “Search for the lepton-flavor violating decays B0se±μ± and e±μ±”, Phys. Rev. Lett., 111 (2013) 141801 [arXiv:1307.4889 [hep-ex]].

    Article  ADS  Google Scholar 

  69. Aubert B. et al. (BaBar Collaboration), “Searches for the decays B0±τ± and B++ν (ℓ = e, μ) using hadronic tag reconstruction”, Phys. Rev. D, 77 (2008) 091104 [arXiv:0801.0697 [hep-ex]].

    Article  ADS  Google Scholar 

  70. Love W. et al. (CLEO Collaboration), “Search for Lepton Flavor Violation in Upsilon Decays”, Phys. Rev. Lett., 101 (2008) 201601 [arXiv:0807.2695 [hep-ex]].

    Article  ADS  Google Scholar 

  71. Aad G. et al. (ATLAS Collaboration), “Search for the lepton flavor violating decay Z in pp collisions at \(\sqrt s = 8\;{\rm{TeV}}\) with the ATLAS detector”, Phys. Rev. D, 90 (2014) 072010 [arXiv:1408.5774 [hep-ex]].

    Article  ADS  Google Scholar 

  72. Akers R. et al. (OPAL Collaboration), “A Search for lepton flavor violating decays”, Z. Phys. C, 67 (1995) 555.

    Article  ADS  Google Scholar 

  73. Abreu P. et al. (DELPHI Collaboration), “Search for lepton flavor number violating decays”, Z. Phys. C, 73 (1997) 243.

    Article  Google Scholar 

  74. Khachatryan V. et al. (CMS Collaboration), “Search for lepton flavour violating decays of the Higgs boson to eτ and in proton-proton collisions at \(\sqrt s = 8\;{\rm{TeV}}\)”, Phys. Lett. B, 763 (2016) 472 [arXiv:1607.03561 [hep-ex]].

    Article  ADS  Google Scholar 

  75. CMS Collaboration (CMS Collaboration), “Search for Lepton Flavour Violating Decays of the Higgs Boson to ΜΤ and eτ in proton proton collisions at \(\sqrt s = 13\;{\rm{TeV}}\)”, CMS-PAS-HIG-17-001.

  76. Patrignani C. et al. (Particle Data Group), “Review of Particle Physics”, Chin. Phys. C, 40 (2016) 100001.

    Article  ADS  Google Scholar 

  77. Amhis Y. et al., “Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016”, arXiv:1612.07233 [hep-ex].

  78. Branco G. C., Ferreira P. M., Lavoura L., Rebelo M. N., Sher M. and Silva J. P., “Theory and phenomenology of two-Higgs-doublet models”, Phys. Rept., 516 (2012) 1 [arXiv:1106.0034 [hep-ph]].

    Article  ADS  Google Scholar 

  79. Crivellin A., Kokulu A. and Greub C., “Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure”, Phys. Rev. D, 87 (2013) 094031 [arXiv:1303.5877 [hep-ph]].

    Article  ADS  Google Scholar 

  80. Glashow S. L. and Weinberg S., “Natural Conservation Laws for Neutral Currents”, Phys. Rev. D, 15 (1977) 1958.

    Article  ADS  Google Scholar 

  81. Paschos E. A., “Diagonal Neutral Currents”, Phys. Rev. D, 15 (1977) 1966.

    Article  ADS  Google Scholar 

  82. Chang D., Hou W. S. and Keung W. Y., Phys. Rev. D, 48 (1993) 217 [hep-ph/9302267]

    Article  ADS  Google Scholar 

  83. Babu K. S. and Kolda C., Phys. Rev. Lett., 89 (2002) 241802 [hep-ph/0206310]

    Article  ADS  Google Scholar 

  84. Kanemura S., Ota T. and Tsumura K., Phys. Rev. D, 73 (2006) 016006 [hep-ph/0505191]

    Article  ADS  Google Scholar 

  85. Paradisi P., JHEP, 0602 (2006) 050 [hep-ph/0508054]

    Article  ADS  Google Scholar 

  86. Paradisi P., JHEP, 0608 (2006) 047 [hep-ph/0601100]

    Article  ADS  Google Scholar 

  87. Hisano J., Sugiyama S., Yamanaka M. and Yang M. J. S., Phys. Lett. B, 694 (2011) 380 [arXiv:1005.3648 [hep-ph]].

    Article  ADS  Google Scholar 

  88. D’Ambrosio G., Giudice G. F., Isidori G. and Strumia A., “Minimal flavor violation: An Effective field theory approach”, Nucl. Phys. B, 645 (2002) 155 [hep-ph/0207036].

    Article  ADS  Google Scholar 

  89. Buras A. J., Carlucci M. V., Gori S. and Isidori G., “Higgs-mediated FCNCs: Natural Flavour Conservation vs. Minimal Flavour Violation”, JHEP, 1010 (2010) 009 [arXiv:1005.5310 [hep-ph]].

    Article  ADS  MATH  Google Scholar 

  90. Dery A. and Nir Y., “FN-2HDM: Two Higgs Doublet Models with Froggatt-Nielsen Symmetry”, JHEP, 1704 (2017) 003 [arXiv:1612.05219 [hep-ph]].

    Article  ADS  Google Scholar 

  91. Doraner I., Fajfer S., Greljo A., Kamenik J. F., Koanik N. and Niaandaic I., “New Physics Models Facing Lepton Flavor Violating Higgs Decays at the Percent Level”, JHEP, 1506 (2015) 108 [arXiv:1502.07784 [hep-ph]].

    Article  ADS  Google Scholar 

  92. Blankenburg G., Ellis J. and Isidori G., “Flavour-Changing Decays of a 125GeV Higgs-like Particle”, Phys. Lett. B, 712 (2012) 386 [arXiv:1202.5704 [hep-ph]].

    Article  ADS  Google Scholar 

  93. Harnik R., Kopp J. and Zupan J., “Flavor Violating Higgs Decays”, JHEP, 1303 (2013) 026 [arXiv:1209.1397 [hep-ph]].

    Article  ADS  Google Scholar 

  94. Dery A., Efrati A., Hochberg Y. and Nir Y., “What if BR(hμμ)/BR(hΤΤ) does not equal m2μ/m2τ”, JHEP, 1305 (2013) 039 [arXiv:1302.3229 [hep-ph]].

    Article  ADS  Google Scholar 

  95. Barr S. M. and Zee A., “Electric Dipole Moment of the Electron and of the Neutron”, Phys. Rev. Lett., 65 (1990) 21 (Erratum: Phys. Rev. Lett., 65 (1990) 2920).

    Article  ADS  Google Scholar 

  96. Bilenky S. M., Giunti C. and Grimus W., “Phenomenology of neutrino oscillations”, Prog. Part. Nucl. Phys., 43 (1999) 1 [hep-ph/9812360].

    Article  ADS  Google Scholar 

  97. Weinberg S., “Baryon and Lepton Nonconserving Processes”, Phys. Rev. Lett., 43 (1979) 1566.

    Article  ADS  Google Scholar 

  98. Pontecorvo B., “Mesonium and anti-mesonium”, Sov. Phys. JETP, 6 (1957) 429 (Zh. Eksp. Teor. Fiz., 33 (1957) 549).

    ADS  Google Scholar 

  99. Maki Z., Nakagawa M. and Sakata S., “Remarks on the unified model of elementary particles”, Prog. Theor. Phys., 28 (1962) 870.

    Article  ADS  MATH  Google Scholar 

  100. Petcov S. T., Sov. J. Nucl. Phys., 25 (1977) 340

    Google Scholar 

  101. Bilenky S. M., Petcov S. T. and Pontecorvo B., Phys. Lett. B, 67 (1977) 309

    Article  ADS  Google Scholar 

  102. Cheng T. P. and Li L.-F., in Proceedings of the Coral Gables Conference, 1977, edited by Saul Perlmutter (Plenum, New York), 1977

  103. Marciano W. and Sanda A., Phys. Lett. B, 67 (1977) 303

    Article  ADS  Google Scholar 

  104. Lee B. W., Pakvasa S., Shrock R. and Sugawara H., Phys. Rev. Lett., 38 (1977) 937

    Article  ADS  Google Scholar 

  105. Lee B. W. and Shrock R., Phys. Rev. D, 16 (1977) 1444.

    Article  ADS  Google Scholar 

  106. Cheng T. P. and Li L. F., Gauge Theory Of Elementary Particle Physics, (Oxford Science Publications), 1984.

  107. Esteban I., Gonzalez-Garcia M. C., Maltoni M., Martinez-Soler I. and Schwetz T., “Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity”, JHEP, 1701 (2017) 087 [arXiv:1611.01514 [hep-ph]].

    Article  ADS  Google Scholar 

  108. Minkowski P., Phys. Lett. B, 67 (1977) 421

    Article  ADS  Google Scholar 

  109. Gell-Mann M., Ramond P. and Slansky R., in Supergravity, edited by van Nieuwenhuizen P. and Freedman D. (North-Holland), 1979, p. 315

  110. Yanagida T., in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, edited by Sawada O. and Sugamoto A. (KEK Report No. 79-18, Tsukuba, 1979) p. 95

  111. Mohapatra R. N. and Senjanovic G., Phys. Rev. Lett., 44 (1980) 912.

    Article  ADS  Google Scholar 

  112. Cai Y., Herrero-Garca J., Schmidt M. A., Vicente A. and Volkas R. R., “From the trees to the forest: a review of radiative neutrino mass models”, arXiv:1706.08524 [hep-ph].

  113. Antusch S., Biggio C., Fernandez-Martinez E., Gavela M. B. and Lopez-Pavon J., “Unitarity of the Leptonic Mixing Matrix”, JHEP, 0610 (2006) 084 [hep-ph/0607020].

    Article  ADS  Google Scholar 

  114. Abada A., Biggio C., Bonnet F., Gavela M. B. and Hambye T., “Low energy effects of neutrino masses”, JHEP, 0712 (2007) 061 [arXiv:0707.4058 [hep-ph]].

    Article  ADS  Google Scholar 

  115. Deppisch F. F. and Pilaftsis A., Phys. Rev. D, 83 (2011) 076007 [arXiv:1012.1834 [hep-ph]]

    Article  ADS  Google Scholar 

  116. Ibarra A., Molinaro E. and Petcov S. T., Phys. Rev. D, 84 (2011) 013005 [arXiv:1103.6217 [hep-ph]]

    Article  ADS  Google Scholar 

  117. Dinh D. N., Ibarra A., Molinaro E. and Petcov S. T., JHEP, 1208 (2012) 125 (Erratum: JHEP, 1309 (2013) 023) [arXiv:1205.4671 [hep-ph]]

    Article  ADS  Google Scholar 

  118. Dinh D. N. and Petcov S. T., JHEP, 1309 (2013) 086 [arXiv:1308.4311 [hep-ph]]

    Article  ADS  Google Scholar 

  119. Abada A., Becirevic D., Lucente M. and Sumensari O., Phys. Rev. D, 91 (2015) 113013 [arXiv:1503.04159 [hep-ph]]

    Article  ADS  Google Scholar 

  120. Hung P. Q., Le T., Tran V. Q. and Yuan T. C., JHEP, 1512 (2015) 169 [arXiv:1508.07016 [hep-ph]]

    ADS  Google Scholar 

  121. Abada A., De Romeri V. and Teixeira A. M., JHEP, 1602 (2016) 083 [arXiv:1510.06657 [hep-ph]]

    Article  ADS  Google Scholar 

  122. Gluza J., Jelinski T. and Szafron R., Phys. Rev. D, 93 (2016) 113017 [arXiv:1604.01388 [hep-ph]]

    Article  ADS  Google Scholar 

  123. Abada A., De Romeri V., Orloff J. and Teixeira A. M., Eur. Phys. J. C, 77 (2017) 304 [arXiv:1612.05548 [hep-ph]]

    Article  ADS  Google Scholar 

  124. Hung P. Q., Le T., Tran V. Q. and Yuan T. C., arXiv:1701.01761 [hep-ph].

  125. Alonso R., Dhen M., Gavela M. B. and Hambye T., JHEP, 1301 (2013) 118 [arXiv:1209.2679 [hep-ph]].

    Article  ADS  Google Scholar 

  126. Gonzalez-Garcia M. C. and Valle J. W. F., “Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models”, Phys. Lett. B, 216 (1989) 360.

    Article  ADS  Google Scholar 

  127. Mohapatra R. N. and Valle J. W. F., “Neutrino Mass and Baryon Number Nonconservation in Superstring Models”, Phys. Rev. D, 34 (1986) 1642.

    Article  ADS  Google Scholar 

  128. Mohapatra R. N., “Mechanism for Understanding Small Neutrino Mass in Superstring Theories”, Phys. Rev. Lett., 56 (1986) 561.

    Article  ADS  Google Scholar 

  129. Crivellin A., Najjari S. and Rosiek J., “Lepton Flavor Violation in the Standard Model with general Dimension-Six Operators”, JHEP, 1404 (2014) 167 [arXiv:1312.0634 [hep-ph]].

    Article  ADS  Google Scholar 

  130. Grzadkowski B., Iskrzynski M., Misiak M. and Rosiek J., “Dimension-Six Terms in the Standard Model Lagrangian”, JHEP, 1010 (2010) 085 [arXiv:1008.4884 [hep-ph]].

    Article  ADS  MATH  Google Scholar 

  131. Cirigliano V., Kitano R., Okada Y. and Tuzon P., “On the model discriminating power of μ → e conversion in nuclei”, Phys. Rev. D, 80 (2009) 013002 [arXiv:0904.0957 [hep-ph]].

    Article  ADS  Google Scholar 

  132. Carpentier M. and Davidson S., “Constraints on two-lepton, two quark operators”, Eur. Phys. J. C, 70 (2010) 1071 [arXiv:1008.0280 [hep-ph]].

    Article  ADS  Google Scholar 

  133. Petrov A. A. and Zhuridov D. V., “Lepton flavor-violating transitions in effective field theory and gluonic operators”, Phys. Rev. D, 89 (2014) 033005 [arXiv:1308.6561 [hep-ph]].

    Article  ADS  Google Scholar 

  134. Pruna G. M. and Signer A., “The μ decay in a systematic effective field theory approach with dimension 6 operators”, JHEP, 1410 (2014) 014 [arXiv:1408.3565 [hep-ph]].

    Article  ADS  Google Scholar 

  135. Beneke M., Moch P. and Rohrwild J., “Lepton flavour violation in RS models with a brane- or nearly brane-localized Higgs”, Nucl. Phys. B, 906 (2016) 561 [arXiv:1508.01705 [hep-ph]].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  136. Feruglio F., Paradisi P. and Pattori A., “Lepton Flavour Violation in Composite Higgs Models”, Eur. Phys. J. C, 75 (2015) 579 [arXiv:1509.03241 [hep-ph]].

    Article  ADS  Google Scholar 

  137. Davidson S., “μ and matching at mW”, Eur. Phys. J. C, 76 (2016) 370 [arXiv:1601.07166 [hep-ph]].

    Article  ADS  Google Scholar 

  138. Hazard D. E. and Petrov A. A., “Lepton flavor violating quarkonium decays”, Phys. Rev. D, 94 (2016) 074023 [arXiv:1607.00815 [hep-ph]].

    Article  ADS  Google Scholar 

  139. Crivellin A., Davidson S., Pruna G. M. and Signer A., “Complementarity in lepton-flavour violating muon decay experiments”, arXiv:1611.03409 [hep-ph].

  140. Crivellin A., Davidson S., Pruna G. M. and Signer A., “Renormalisation-group improved analysis of μ → e processes in a systematic effective-field-theory approach”, JHEP, 1705 (2017) 117 [arXiv:1702.03020 [hep-ph]].

    Article  ADS  Google Scholar 

  141. Dinh D. N., Merlo L., Petcov S. T. and Vega-Alvarez R., “Revisiting Minimal Lepton Flavour Violation in the Light of Leptonic CP Violation”, JHEP, 1707 (2017) 089 [arXiv:1705.09284 [hep-ph]].

    Article  ADS  Google Scholar 

  142. Celis A., Cirigliano V. and Passemar E., “Model-discriminating power of lepton flavor violating τ decays”, Phys. Rev. D, 89 (2014) 095014 [arXiv:1403.5781 [hep-ph]].

    Article  ADS  Google Scholar 

  143. Hisano J., Moroi T., Tobe K. and Yamaguchi M., “Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model”, Phys. Rev. D, 53 (1996) 2442 [hep-ph/9510309].

    Article  ADS  Google Scholar 

  144. Kitano R., Koike M. and Okada Y., “Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei”, Phys. Rev. D, 66 (2002) 096002 (Erratum: Phys. Rev. D, 76 (2007) 059902) [hep-ph/0203110].

    Article  ADS  Google Scholar 

  145. Crivellin A., Hoferichter M. and Procura M., “Improved predictions for μ → e conversion in nuclei and Higgs-induced lepton flavor violation”, Phys. Rev. D, 89 (2014) 093024 [arXiv:1404.7134 [hep-ph]].

    Article  ADS  Google Scholar 

  146. Farzan Y. and Shoemaker I. M., “Lepton Flavor Violating Non-Standard Interactions via Light Mediators”, JHEP, 1607 (2016) 033 [arXiv:1512.09147 [hep-ph]].

    Article  ADS  Google Scholar 

  147. Heeck J., “Lepton flavor violation with light vector bosons”, Phys. Lett. B, 758 (2016) 101 [arXiv:1602.03810 [hep-ph]].

    Article  ADS  Google Scholar 

  148. Borzumati F. and Masiero A., “Large Muon and electron Number Violations in Supergravity Theories”, Phys. Rev. Lett., 57 (1986) 961.

    Article  ADS  Google Scholar 

  149. Martin S. P., “A Supersymmetry primer”, Adv. Ser. Direct. High Energy Phys., 21 (2010) 1 (Adv. Ser. Direct. High Energy Phys., 18 (1998) 1) [hep-ph/9709356].

    Article  MATH  Google Scholar 

  150. Altmannshofer W., Buras A. J., Gori S., Paradisi P. and Straub D. M., “Anatomy and Phenomenology of FCNC and CPV Effects in SUSY Theories”, Nucl. Phys. B, 830 (2010) 17 [arXiv:0909.1333 [hep-ph]].

    Article  ADS  MATH  Google Scholar 

  151. The ATLAS Collaboration, “Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb−1 of \(\sqrt s = 13\;{\rm{TeV}}\) pp collision data with the ATLAS detector”, ATLAS-CONF-2017-022; The ATLAS Collaboration, “Search for new phenomena with large jet multiplicities and missing transverse momentum using large-radius jets and flavour-tagging at ATLAS in 13TeV pp collisions”, ATLAS-CONF-2017-033.

  152. Sirunyan A. M. et al. (CMS Collaboration), “Search for new phenomena with the MT2 variable in the all-hadronic final state produced in proton-proton collisions at \(\sqrt s = 13\;{\rm{TeV}}\)”, arXiv:1705.04650 [hep-ex].

  153. The ATLAS collaboration (ATLAS Collaboration), “Search for a Scalar Partner of the Top Quark in the Jets + EmissT Final State at \(\sqrt s = 13\;{\rm{TeV}}\) with the ATLAS detector”, ATLAS-CONF-2017-020.

  154. CMS Collaboration (CMS Collaboration), “Search for direct top squark pair production in the all-hadronic final state in proton-proton collisions at \(\sqrt s = 13\;{\rm{TeV}}\)”, CMS-PAS-SUS-16-049.

  155. Arbey A., Battaglia M., Djouadi A., Mahmoudi F. and Quevillon J., “Implications of a 125 GeV Higgs for supersymmetric models”, Phys. Lett. B, 708 (2012) 162 [arXiv:1112.3028 [hep-ph]].

    Article  ADS  Google Scholar 

  156. Calibbi L., Li T., Mustafayev A. and Raza S., “Improving naturalness in gauge mediation with nonunified messenger sectors”, Phys. Rev. D, 93 (2016) 115018 [arXiv:1603.06720 [hep-ph]].

    Article  ADS  Google Scholar 

  157. Ding R., Li T., Staub F. and Zhu B., “Supersoft Supersymmetry, Conformal Sequestering, and Single Scale Supersymmetry Breaking”, Phys. Rev. D, 93 (2016) 095028 [arXiv:1510.01328 [hep-ph]].

    Article  ADS  MathSciNet  Google Scholar 

  158. Katz A., Mariotti A., Pokorski S., Redigolo D. and Ziegler R., “SUSY Meets Her Twin”, JHEP, 1701 (2017) 142 [arXiv:1611.08615 [hep-ph]].

    Article  ADS  MATH  Google Scholar 

  159. Aad G. et al. (ATLAS Collaboration), “Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \(\sqrt s = 8\;{\rm{TeV}}\) with the ATLAS detector”, JHEP, 1405 (2014) 071 [arXiv:1403.5294 [hep-ex]].

    Article  ADS  Google Scholar 

  160. CMS Collaboration (CMS Collaboration), “Search for electroweak production of charginos and neutralinos in multilepton final states in pp collision data at \(\sqrt s = 13\;{\rm{TeV}}\)”, CMS-PAS-SUS-16-039.

  161. Ilakovac A. and Pilaftsis A., “Flavor violating charged lepton decays in seesaw-type models”, Nucl. Phys. B, 437 (1995) 491 [hep-ph/9403398].

    Article  ADS  Google Scholar 

  162. Arganda E. and Herrero M. J., “Testing supersymmetry with lepton flavor violating τ and μ decays”, Phys. Rev. D, 73 (2006) 055003 [hep-ph/0510405].

    Article  ADS  Google Scholar 

  163. Arganda E., Herrero M. J. and Teixeira A. M., “μ − e conversion in nuclei within the CMSSM seesaw: Universality versus non-universality”, JHEP, 0710 (2007) 104 [arXiv:0707.2955 [hep-ph]].

    Article  ADS  Google Scholar 

  164. Lee I. H., “Lepton Number Violation in Softly Broken Supersymmetry”, Phys. Lett. B, 138 (1984) 121

    Article  ADS  Google Scholar 

  165. Lee I. H., “Lepton Number Violation in Softly Broken Supersymmetry. 2.”, Nucl. Phys. B, 246 (1984) 120.

    Article  ADS  Google Scholar 

  166. Hall L. J., Kostelecky V. A. and Raby S., “New Flavor Violations in Supergravity Models”, Nucl. Phys. B, 267 (1986) 415.

    Article  ADS  Google Scholar 

  167. Hisano J. and Nomura D., “Solar and atmospheric neutrino oscillations and lepton flavor violation in supersymmetric models with the right-handed neutrinos”, Phys. Rev. D, 59 (1999) 116005 [hep-ph/9810479].

    Article  ADS  Google Scholar 

  168. Paradisi P., “Constraints on SUSY lepton flavor violation by rare processes”, JHEP, 0510 (2005) 006 [hep-ph/0505046].

    Article  ADS  Google Scholar 

  169. Calibbi L., Galon I., Masiero A., Paradisi P. and Shadmi Y., “Charged Slepton Flavor post the 8 TeV LHC: A Simplified Model Analysis of Low-Energy Constraints and LHC SUSY Searches”, JHEP, 1510 (2015) 043 [arXiv:1502.07753 [hep-ph]].

    Article  ADS  Google Scholar 

  170. Gabbiani F. and Masiero A., “FCNC in Generalized Supersymmetric Theories”, Nucl. Phys. B, 322 (1989) 235.

    Article  ADS  Google Scholar 

  171. Gabbiani F., Gabrielli E., Masiero A. and Silvestrini L., “A Complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model”, Nucl. Phys. B, 477 (1996) 321 [hep-ph/9604387].

    Article  ADS  Google Scholar 

  172. Masina I. and Savoy C. A., “Sleptonarium: Constraints on the CP and flavor pattern of scalar lepton masses”, Nucl. Phys. B, 661 (2003) 365 [hep-ph/0211283].

    Article  ADS  Google Scholar 

  173. Jegerlehner F. and Nyffeler A., “The Muon g − 2”, Phys. Rep., 477 (2009) 1 [arXiv:0902.3360 [hep-ph]].

    Article  ADS  Google Scholar 

  174. Kersten J., Park J. H., Stckinger D. and Velasco-Sevilla L., “Understanding the correlation between (g − 2)μ and μ in the MSSM”, JHEP, 1408 (2014) 118 [arXiv:1405.2972 [hep-ph]].

    Article  ADS  Google Scholar 

  175. Hisano J., Nagai M. and Paradisi P., “Flavor effects on the electric dipole moments in supersymmetric theories: A beyond leading order analysis”, Phys. Rev. D, 80 (2009) 095014 [arXiv:0812.4283 [hep-ph]].

    Article  ADS  Google Scholar 

  176. Eckel J., Ramsey-Musolf M. J., Shepherd W. and Su S., “Impact of LSP Character on Slepton Reach at the LHC”, JHEP, 1411 (2014) 117 [arXiv:1408.2841 [hep-ph]].

    Article  ADS  Google Scholar 

  177. Froggatt C. D. and Nielsen H. B., “Hierarchy of Quark Masses, Cabibbo Angles and CP Violation”, Nucl. Phys. B, 147 (1979) 277.

    Article  ADS  Google Scholar 

  178. Leurer M., Nir Y. and Seiberg N., “Mass matrix models”, Nucl. Phys. B, 398 (1993) 319 [hep-ph/9212278].

    Article  ADS  MathSciNet  Google Scholar 

  179. Leurer M., Nir Y. and Seiberg N., “Mass matrix models: The Sequel”, Nucl. Phys. B, 420 (1994) 468 [hep-ph/9310320].

    Article  ADS  Google Scholar 

  180. Pomarol A. and Tommasini D., “Horizontal symmetries for the supersymmetric flavor problem”, Nucl. Phys. B, 466 (1996) 3 [hep-ph/9507462].

    Article  ADS  Google Scholar 

  181. Barbieri R., Dvali G. R. and Hall L. J., “Predictions from a U(2) flavor symmetry in supersymmetric theories”, Phys. Lett. B, 377 (1996) 76 [hep-ph/9512388].

    Article  ADS  Google Scholar 

  182. King S. F. and Ross G. G., “Fermion masses and mixing angles from SU(3) family symmetry”, Phys. Lett. B, 520 (2001) 243 [hep-ph/0108112].

    Article  ADS  Google Scholar 

  183. Altarelli G. and Feruglio F., “Tri-bimaximal neutrino mixing, A(4) and the modular symmetry”, Nucl. Phys. B, 741 (2006) 215 [hep-ph/0512103].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  184. Dudas E., von Gersdorff G., Parmentier J. and Pokorski S., “Flavour in supersymmetry: Horizontal symmetries or wave function renormalisation”, JHEP, 1012 (2010) 015 [arXiv:1007.5208 [hep-ph]].

    Article  ADS  MATH  Google Scholar 

  185. Altmannshofer W., Harnik R. and Zupan J., “Low Energy Probes of PeV Scale Sfermions”, JHEP, 1311 (2013) 202 [arXiv:1308.3653 [hep-ph]].

    Article  ADS  Google Scholar 

  186. Calibbi L., Jones-Perez J. and Vives O., “Electric dipole moments from flavoured CP violation in SUSY”, Phys. Rev. D, 78 (2008) 075007 [arXiv:0804.4620 [hep-ph]].

    Article  ADS  Google Scholar 

  187. Calibbi L., Jones-Perez J., Masiero A., Park J. H., Porod W. and Vives O., “FCNC and CP Violation Observables in a SU(3)-flavoured MSSM”, Nucl. Phys. B, 831 (2010) 26 [arXiv:0907.4069 [hep-ph]].

    Article  ADS  MATH  Google Scholar 

  188. Blankenburg G., Isidori G. and Jones-Perez J., “Neutrino Masses and LFV from Minimal Breaking of U(3)5 and U(2)5 flavor Symmetries”, Eur. Phys. J. C, 72 (2012) 2126 [arXiv:1204.0688 [hep-ph]].

    Article  ADS  Google Scholar 

  189. Feruglio F., Hagedorn C., Lin Y. and Merlo L., “Lepton Flavour Violation in a Supersymmetric Model with A(4) Flavour Symmetry”, Nucl. Phys. B, 832 (2010) 251 [arXiv:0911.3874 [hep-ph]].

    Article  ADS  MATH  Google Scholar 

  190. Altarelli G., Feruglio F., Merlo L. and Stamou E., “Discrete Flavour Groups, θ13 and Lepton Flavour Violation”, JHEP, 1208 (2012) 021 [arXiv:1205.4670 [hep-ph]].

    Article  ADS  Google Scholar 

  191. Nomura Y., Papucci M. and Stolarski D., “Flavorful supersymmetry”, Phys. Rev. D, 77 (2008) 075006 [arXiv:0712.2074 [hep-ph]].

    Article  ADS  Google Scholar 

  192. Nomura Y., Papucci M. and Stolarski D., “Flavorful Supersymmetry from Higher Dimensions”, JHEP, 0807 (2008) 055 [arXiv:0802.2582 [hep-ph]].

    Article  ADS  MathSciNet  Google Scholar 

  193. Keren-Zur B., Lodone P., Nardecchia M., Pappadopulo D., Rattazzi R. and Vecchi L., “On Partial Compositeness and the CP asymmetry in charm decays”, Nucl. Phys. B, 867 (2013) 394 [arXiv:1205.5803 [hep-ph]].

    Article  ADS  MATH  Google Scholar 

  194. Giudice G. F. and Rattazzi R., “Theories with gauge mediated supersymmetry breaking”, Phys. Rep., 322 (1999) 419 [hep-ph/9801271].

    Article  ADS  MATH  Google Scholar 

  195. Chacko Z. and Ponton E., “Yukawa deflected gauge mediation”, Phys. Rev. D, 66 (2002) 095004 [hep-ph/0112190].

    Article  ADS  Google Scholar 

  196. Evans J. L., Ibe M. and Yanagida T. T., “Relatively Heavy Higgs Boson in More Generic Gauge Mediation”, Phys. Lett. B, 705 (2011) 342 [arXiv:1 107.3006 [hep-ph]].

    Article  ADS  Google Scholar 

  197. Evans J. L., Ibe M., Shirai S. and Yanagida T. T., “A 125 GeV Higgs Boson and Muon g−2 in More Generic Gauge Mediation”, Phys. Rev. D, 85 (2012) 095004 [arXiv:1201.2611 [hep-ph]].

    Article  ADS  Google Scholar 

  198. Evans J. A. and Shih D., “Surveying Extended GMSB Models with mh = 125GeV”, JHEP, 1308 (2013) 093 [arXiv:1303.0228 [hep-ph]].

    Article  ADS  Google Scholar 

  199. Shadmi Y. and Szabo P. Z., “Flavored Gauge-Mediation”, JHEP, 1206 (2012) 124 [arXiv:1103.0292 [hep-ph]].

    Article  ADS  Google Scholar 

  200. Abdullah M., Galon I., Shadmi Y. and Shirman Y., “Flavored Gauge Mediation, A Heavy Higgs, and Supersymmetric Alignment”, JHEP, 1306 (2013) 057 [arXiv:1209.4904 [hep-ph]].

    Article  ADS  Google Scholar 

  201. Calibbi L., Paradisi P. and Ziegler R., “Gauge Mediation beyond Minimal Flavor Violation”, JHEP, 1306 (2013) 052 [arXiv:1304.1453 [hep-ph]].

    Article  ADS  Google Scholar 

  202. Calibbi L., Paradisi P. and Ziegler R., “Lepton Flavor Violation in Flavored Gauge Mediation”, Eur. Phys. J. C, 74 (2014) 3211 [arXiv:1408.0754 [hep-ph]].

    Article  Google Scholar 

  203. Calibbi L., Lalak Z., Pokorski S. and Ziegler R., “The Messenger Sector of SUSY Flavour Models and Radiative Breaking of Flavour Universality”, JHEP, 1206 (2012) 018 [arXiv:1203.1489 [hep-ph]].

    Article  ADS  Google Scholar 

  204. Casas J. A. and Ibarra A., “Oscillating neutrinos and μ+ → e+γ”, Nucl. Phys. B, 618 (2001) 171 [hep-ph/0103065].

    Article  ADS  MATH  Google Scholar 

  205. Masiero A., Vempati S. K. and Vives O., “Seesaw and lepton flavor violation in SUSY SO(10)”, Nucl. Phys. B, 649 (2003) 189 [hep-ph/0209303].

    Article  ADS  Google Scholar 

  206. Carvalho D. F., Ellis J. R., Gomez M. E. and Lola S., Phys. Lett. B, 515 (2001) 323 [hep-ph/0103256]

    Article  ADS  Google Scholar 

  207. Lavignac S., Masina I. and Savoy C. A., Phys. Lett. B, 520 (2001) 269 [hep-ph/0106245]

    Article  ADS  Google Scholar 

  208. Lavignac S., Masina I. and Savoy C. A., Nucl. Phys. B, 633 (2002) 139 [hep-ph/0202086]

    Article  ADS  Google Scholar 

  209. Petcov S. T., Profumo S., Takanishi Y. and Yaguna C. E., Nucl. Phys. B, 676 (2004) 453 [hep-ph/0306195]

    Article  ADS  Google Scholar 

  210. Petcov S. T., Shindou T. and Takanishi Y., Nucl. Phys. B, 738 (2006) 219 [hep-ph/0508243]

    Article  ADS  Google Scholar 

  211. Petcov S. T., Rodejohann W., Shindou T. and Takanishi Y., Nucl. Phys. B, 739 (2006) 208 [hep-ph/0510404]

    Article  ADS  Google Scholar 

  212. Deppisch F., Pas H., Redelbach A. and Ruckl R., Phys. Rev. D, 73 (2006) 033004 [hep-ph/0511062].

    Article  ADS  Google Scholar 

  213. Calibbi L., Faccia A., Masiero A. and Vempati S. K., Phys. Rev. D, 74 (2006) 116002 [hep-ph/0605139]

    Article  ADS  Google Scholar 

  214. Antusch S., Arganda E., Herrero M. J. and Teixeira A. M., JHEP, 0611 (2006) 090 [hep-ph/0607263]

    Article  ADS  Google Scholar 

  215. Hirsch M., Valle J. W. F., Porod W., Romao J. C. and Villanova del Moral A., Phys. Rev. D, 78 (2008) 013006 [arXiv:0804.4072 [hep-ph]]

    Article  ADS  Google Scholar 

  216. Hisano J., Nagai M., Paradisi P. and Shimizu Y., JHEP, 0912 (2009) 030 [arXiv:0904.2080 [hep-ph]]

    Article  ADS  Google Scholar 

  217. Hagedorn C., Molinaro E. and Petcov S. T., JHEP, 1002 (2010) 047 [arXiv:0911.3605 [hep-ph]]

    Article  ADS  Google Scholar 

  218. Hirsch M., Joaquim F. R. and Vicente A., JHEP, 1211 (2012) 105 [arXiv:1207.6635 [hep-ph]]

    Article  ADS  Google Scholar 

  219. Calibbi L., Chowdhury D., Masiero A., Patel K. M. and Vempati S. K., JHEP, 1211 (2012) 040 [arXiv:1207.7227 [hep-ph]]

    Article  ADS  Google Scholar 

  220. Cannoni M., Ellis J., Gomez M. E. and Lola S., Phys. Rev. D, 88 (2013) 075005 [arXiv:1301.6002 [hep-ph]].

    Article  ADS  Google Scholar 

  221. Buchmuller W., Di Bari P. and Plumacher M., “Leptogenesis for pedestrians”, Annals Phys., 315 (2005) 305 [hep-ph/0401240].

    Article  ADS  MATH  Google Scholar 

  222. Fong C. S., Nardi E. and Riotto A., “Leptogenesis in the Universe”, Adv. High Energy Phys., 2012 (2012) 158303 [arXiv:1301.3062 [hep-ph]].

    Article  MathSciNet  MATH  Google Scholar 

  223. Chang D., Masiero A. and Murayama H., “Neutrino mixing and large CP violation in B physics”, Phys. Rev. D, 67 (2003) 075013 [hep-ph/0205111].

    Article  ADS  Google Scholar 

  224. Magg M. and Wetterich C., Phys. Lett. B, 94 (1980) 61

    Article  ADS  Google Scholar 

  225. Schechter J. and Valle J. W. F., Phys. Rev. D, 22 (1980) 2227

    Article  ADS  Google Scholar 

  226. Wetterich C., Nucl. Phys. B, 187 (1981) 343

    Article  ADS  Google Scholar 

  227. Lazarides G., Shafi Q. and Wetterich C., Nucl. Phys. B, 181 (1981) 287

    Article  ADS  Google Scholar 

  228. Mohapatra R. N. and Senjanovic G., Phys. Rev. D, 23 (1981) 165.

    Article  ADS  Google Scholar 

  229. Foot R., Lew H., He X. G. and Joshi G. C., Z. Phys. C, 44 (1989) 441

    Article  Google Scholar 

  230. Ma E., Phys. Rev. Lett., 81 (1998) 1171 [hep-ph/9805219]

    Article  ADS  Google Scholar 

  231. Ma E. and Roy D. P., Nucl. Phys. B, 644 (2002) 290 [hep-ph/0206150].

    Article  ADS  Google Scholar 

  232. Rossi A., “Supersymmetric seesaw without singlet neutrinos: Neutrino masses and lepton flavor violation”, Phys. Rev. D, 66 (2002) 075003 [hep-ph/0207006].

    Article  ADS  Google Scholar 

  233. Joaquim F. R. and Rossi A., “Phenomenology of the triplet seesaw mechanism with Gauge and Yukawa mediation of SUSY breaking”, Nucl. Phys. B, 765 (2007) 71 [hep-ph/0607298].

    Article  ADS  MATH  Google Scholar 

  234. Biggio C. and Calibbi L., “Phenomenology of SUSY SU(5) with type I+III seesaw”, JHEP, 1010 (2010) 037 [arXiv:1007.3750 [hep-ph]].

    Article  ADS  MATH  Google Scholar 

  235. Esteves J. N., Romao J. C., Hirsch M., Staub F. and Porod W., “Supersymmetric type-III seesaw: lepton flavour violating decays and dark matter”, Phys. Rev. D, 83 (2011) 013003 [arXiv:1010.6000 [hep-ph]].

    Article  ADS  Google Scholar 

  236. Deppisch F. and Valle J. W. F., “Enhanced lepton flavor violation in the supersymmetric inverse seesaw model”, Phys. Rev. D, 72 (2005) 036001 [hep-ph/0406040].

    Article  ADS  Google Scholar 

  237. Abada A., Krauss M. E., Porod W., Staub F., Vicente A. and Weiland C. “Lepton flavor violation in low-scale seesaw models: SUSY and non-SUSY contributions”, JHEP, 1411 (2014) 048 [arXiv:1408.0138 [hep-ph]].

    Article  ADS  Google Scholar 

  238. Vicente A., “Lepton flavor violation beyond the MSSM”, Adv. High Energy Phys., 2015 (2015) 686572 [arXiv:1503.08622 [hep-ph]].

    Article  MathSciNet  Google Scholar 

  239. Barbieri R. and Hall L. J., “Signals for supersymmetric unification”, Phys. Lett. B, 338 (1994) 212 [hep-ph/9408406].

    Article  ADS  Google Scholar 

  240. Barbieri R., Hall L. J. and Strumia A., “Violations of lepton flavor and CP in supersymmetric unified theories”, Nucl. Phys. B, 445 (1995) 219 [hep-ph/9501334].

    Article  ADS  Google Scholar 

  241. Redi M., “Leptons in Composite MFV”, JHEP, 1309 (2013) 060 [arXiv:1306.1525 [hep-ph]].

    Article  ADS  Google Scholar 

  242. Panico G. and Wulzer A., “The Composite Nambu-Goldstone Higgs”, Lect. Notes Phys., 913 (2016) 1 [arXiv:1506.01961 [hep-ph]].

    Article  MATH  Google Scholar 

  243. Hagedorn C. and Serone M., “Leptons in Holographic Composite Higgs Models with Non-Abelian Discrete Symmetries”, JHEP, 1110 (2011) 083 [arXiv:1106.4021 [hep-ph]].

    Article  ADS  MATH  Google Scholar 

  244. Hagedorn C. and Serone M., “General Lepton Mixing in Holographic Composite Higgs Models”, JHEP, 1202 (2012) 077 [arXiv:1110.4612 [hep-ph]].

    Article  ADS  MATH  Google Scholar 

  245. de Gouvea A., Lola S. and Tobe K., “Lepton flavor violation in supersymmetric models with trilinear R-parity violation”, Phys. Rev. D, 63 (2001) 035004 [hep-ph/0008085].

    Article  ADS  Google Scholar 

  246. Dreiner H. K., Kramer M. and O’Leary B., “Bounds on R-parity violating supersymmetric couplings from leptonic and semi-leptonic meson decays”, Phys. Rev. D, 75 (2007) 114016 [hep-ph/0612278].

    Article  ADS  Google Scholar 

  247. Abada A., Biggio C., Bonnet F., Gavela M. B. and Hambye T., “μ and τℓγ decays in the fermion triplet seesaw model”, Phys. Rev. D, 78 (2008) 033007 [arXiv:0803.0481 [hep-ph]].

    Article  ADS  Google Scholar 

  248. Aaij R. et al. (LHCb Collaboration), “Test of lepton universality using B+K++ decays”, Phys. Rev. Lett., 113 (2014) 151601 [arXiv:1406.6482 [hep-ex]].

    Article  ADS  Google Scholar 

  249. Aaij R. et al. (LHCb Collaboration), “Test of lepton universality with K*0+ decays”, arXiv:1705.05802 [hep-ex].

  250. Bordone M., Isidori G. and Pattori A., “On the Standard Model predictions for Rk and RK*”, Eur. Phys. J. C, 76 (2016) 440 [arXiv:1605.07633 [hep-ph]].

    Article  ADS  Google Scholar 

  251. Aaij R. et al. (LHCb Collaboration), “Differential branching fractions and isospin asymmetries of BK(*)μ+μ decays”, JHEP, 1406 (2014) 133 [arXiv:1403.8044 [hep-ex]].

    Article  ADS  Google Scholar 

  252. Aaij R. et al. (LHCb Collaboration), “Angular analysis and differential branching fraction of the decay B{s/}0φμ+μ”, JHEP, 1509 (2015) 179 [arXiv:1506.08777 [hep-ex]].

    Article  ADS  Google Scholar 

  253. Aaij R. et al. (LHCb Collaboration), “Measurement of Form-Factor-Independent Observables in the Decay K*0μ+μ”, Phys. Rev. Lett., 111 (2013) 191801 [arXiv:1308.1707 [hep-ex]].

    Article  ADS  Google Scholar 

  254. Aaij R. et al. (LHCb Collaboration), “Angular analysis of the B0K*0μ+μ decay using 3fb−1 of integrated luminosity”, JHEP, 1602 (2016) 104 [arXiv:1512.04442 [hep-ex]].

    Article  ADS  Google Scholar 

  255. Lees J. P. et al. (BaBar Collaboration), “Measurement of an Excess of \(\bar B \to {D^{(*)}}{\tau ^-}{\bar \nu _\tau}\) Decays and Implications for Charged Higgs Bosons”, Phys. Rev. D, 88 (2013) 072012 [arXiv:1303.0571 [hep-ex]].

    Article  ADS  Google Scholar 

  256. Hirose S. et al. (Belle Collaboration), “Measurement of the τ lepton polarization and B,(D*) in the decay \(\bar B \to {D^*}{\tau ^-}{\bar \nu _\tau}\)”, Phys. Rev. Lett., 118 (2017) 211801 [arXiv:1612.00529 [hep-ex]].

    Article  ADS  Google Scholar 

  257. Aaij R. et al. (LHCb Collaboration), “Measurement of the ratio of branching fractions \({\cal B}({\bar B^0} \to {D^{* +}}{\tau ^-}{\bar \nu _\tau})/{\cal B}({\bar B^0} \to {D^{* +}}{\mu ^-}{\bar \nu _\mu})\)”, Phys. Rev. Lett., 115 (2015) 111803 (Erratum: Phys. Rev. Lett., 115 (2015) 159901) [arXiv:1506.08614 [hep-ex]].

    Article  ADS  Google Scholar 

  258. Fajfer S., Kamenik J. F. and Nisandzic I., “On the \(B \to {D^*}\tau {\bar \nu _\tau}\) Sensitivity to New Physics”, Phys. Rev. D, 85 (2012) 094025 [arXiv:1203.2654 [hep-ph]].

    Article  ADS  Google Scholar 

  259. Aoki S. et al., “Review of lattice results concerning low-energy particle physics”, Eur. Phys. J. C, 77 (2017) 112 [arXiv:1607.00299 [hep-lat]].

    Article  ADS  Google Scholar 

  260. Di Luzio L. and Nardecchia M., “What is the scale of new physics behind the B-flavour anomalies?”, arXiv:1706.01868 [hep-ph].

  261. Hiller G. and Schmaltz M., Phys. Rev. D, 90 (2014) 054014 [arXiv:1408.1627 [hep-ph]]

    Article  ADS  Google Scholar 

  262. Descotes-Genon S., Hofer L., Matias J. and Virto J., JHEP, 1606 (2016) 092 [arXiv:1510.04239 [hep-ph]]

    Article  ADS  Google Scholar 

  263. Capdevila B., Descotes-Genon S., Matias J. and Virto J., JHEP, 1610 (2016) 075 [arXiv:1605.03156 [hep-ph]]

    Article  ADS  Google Scholar 

  264. Altmannshofer W. and Straub D. M., arXiv:1503.06199 [hep-ph]

  265. Altmannshofer W. and Straub D. M., Eur. Phys. J. C, 75 (2015) 382 [arXiv:1411.3161 [hep-ph]]

    Article  ADS  Google Scholar 

  266. Hurth T., Mahmoudi F. and Neshatpour S., Nucl. Phys. B, 909 (2016) 737 [arXiv:1603.00865 [hep-ph]]

    Article  ADS  Google Scholar 

  267. Ghosh D., Nardecchia M. and Renner S. A., JHEP, 1412 (2014) 131 [arXiv:1408.4097 [hep-ph]].

    Article  ADS  Google Scholar 

  268. Capdevila B., Crivellin A., Descotes-Genon S., Matias J. and Virto J., arXiv:1704.05340 [hep-ph]; Altmannshofer W., Stangl P. and Straub D. M., arXiv:1704.05435 [hep-ph]; D’Amico G., Nardecchia M., Panci P., Sannino F., Strumia A., Torre R. and Urbano A., arXiv:1704.05438 [hep-ph]; Geng L. S., Grinstein B., Jger S., Martin Camalich J., Ren X. L. and Shi R. X., arXiv:1704.05446 [hep-ph]; Ciuchini M., Coutinho A. M., Fedele M., Franco E., Paul A., Silvestrini L. and Valli M., arXiv:1704.05447 [hep-ph]; Neshatpour S., Chobanova V. G., Hurth T., Mahmoudi F. and Martinez Santos D., arXiv:1705.10730 [hep-ph].

  269. Bhattacharya B., Datta A., London D. and Shivashankara S., “Simultaneous Explanation of the RK and R.(D(*)) Puzzles”, Phys. Lett. B, 742 (2015) 370 [arXiv:1412.7164 [hep-ph]].

    Article  ADS  MATH  Google Scholar 

  270. Calibbi L., Crivellin A. and Ota T., “Effective Field Theory Approach to bsℓℓ(’), \(B \to {K^{(*)}}\nu \bar \nu\) and BD(*)Τv with Third Generation Couplings”, Phys. Rev. Lett., 115 (2015) 181801 [arXiv:1506.02661 [hep-ph]].

    Article  ADS  Google Scholar 

  271. Glashow S. L., Guadagnoli D. and Lane K., “Lepton Flavor Violation in B Decays?”, Phys. Rev. Lett., 114 (2015) 091801 [arXiv:1411.0565 [hep-ph]].

    Article  ADS  Google Scholar 

  272. Alonso R., Grinstein B. and Martin Camalich J., “Lepton universality violation and lepton flavor conservation in B-meson decays”, JHEP, 1510 (2015) 184 [arXiv:1505.05164 [hep-ph]].

    Article  ADS  Google Scholar 

  273. Greljo A., Isidori G. and Marzocca D., “On the breaking of Lepton Flavor Universality in B decays”, JHEP, 1507 (2015) 142 [arXiv:1506.01705 [hep-ph]].

    Article  ADS  Google Scholar 

  274. Buttazzo D., Greljo A., Isidori G. and Marzocca D., “B-physics anomalies: a guide to combined explanations”, arXiv:1706.07808 [hep-ph].

  275. Feruglio F., Paradisi P. and Pattori A., “Revisiting Lepton Flavor Universality in B Decays”, Phys. Rev. Lett., 118 (2017) 011801 [arXiv:1606.00524 [hep-ph]].

    Article  ADS  Google Scholar 

  276. Feruglio F., Paradisi P. and Pattori A., “On the Importance of Electroweak Corrections for B Anomalies”, arXiv:1705.00929 [hep-ph].

  277. Altmannshofer W., Gori S., Pospelov M. and Yavin I., “Quark flavor transitions in Lμ −Lτ models”, Phys. Rev. D, 89 (2014) 095033 [arXiv:1403.1269 [hep-ph]].

    Article  ADS  Google Scholar 

  278. Crivellin A., D’Ambrosio G. and Heeck J., “Explaining h → μ±τ±, B → K K*μ+μ and B+μ/B → Ke+e in a two-Higgs-doublet model with gauged LμLτ”, Phys. Rev. Lett., 114 (2015) 151801 [arXiv:1501.00993 [hep-ph]].

    Article  ADS  Google Scholar 

  279. Crivellin A., Hofer L., Matias J., Nierste U., Pokorski S. and Rosiek J., “Lepton-flavour violating B decays in generic Z’ models”, Phys. Rev. D, 92 (2015) 054013 [arXiv:1504.07928 [hep-ph]].

    Article  ADS  Google Scholar 

  280. D. Bečirević, Sumensari O. and Zukanovich Funchal R., “Lepton flavor violation in exclusive bs decays”, Eur. Phys. J. C, 76 (2016) 134 [arXiv:1602.00881 [hep-ph]].

    Article  ADS  Google Scholar 

  281. Falkowski A., Nardecchia M. and Ziegler R., “Lepton Flavor Non-Universality in B-meson Decays from a U(2) Flavor Model”, JHEP, 1511 (2015) 173 [arXiv:1509.01249 [hep-ph]].

    Article  ADS  Google Scholar 

  282. de Medeiros Varzielas I. and Hiller G., “Clues for flavor from rare lepton and quark decays”, JHEP, 1506 (2015) 072 [arXiv:1503.01084 [hep-ph]].

    Article  Google Scholar 

  283. Becirevic D., Kosnik N., Sumensari O. and Zukanovich R., Funchal, “Palatable Leptoquark Scenarios for Lepton Flavor Violation in Exclusive bsℓ12 modes”, JHEP, 1611 (2016) 035 [arXiv:1608.07583 [hep-ph]].

    Article  Google Scholar 

  284. Becirevic D. and Sumensari O., “A leptoquark model to accommodate R{K/exp} < R{K/SM} and R{K*/exp} < R{K*/SM}, JHEP, 1708 (2017) 104 [arXiv:1704.05835 [hep-ph]].

    Article  ADS  Google Scholar 

  285. Crivellin A., Mueller D., Signer A. and Ulrich Y., “Correlating Lepton Flavour (Universality) Violation in B Decays with μ using Leptoquarks”, arXiv:1706.08511 [hep-ph].

  286. Doraner I., Fajfer S., Greljo A., Kamenik J. F. and Kosnik N., “Physics of leptoquarks in precision experiments and at particle colliders”, Phys. Rep., 641 (2016) 1 [arXiv:1603.04993 [hep-ph]].

    Article  ADS  MathSciNet  Google Scholar 

  287. Pruna G. M., Signer A. and Ulrich Y., Fully differential NLO predictions for the rare muon decay, Phys. Lett. B, 765 (2017) 280, [arXiv:1611.03617].

    Article  ADS  Google Scholar 

  288. Baldini A. M. et al. (MEG Collaboration), “Muon polarization in the MEG experiment: predictions and measurements”, Eur. Phys. J. C, 76 (2016) 223 [arXiv:1510.04743 [hep-ex]].

    Article  ADS  Google Scholar 

  289. Kuno Y., Maki A. and Okada Y., “Background suppression for μ with polarized muons”, Phys. Rev. D, 55 (1997) 2517 [hep-ph/9609307].

    Article  ADS  Google Scholar 

  290. Weissemberg A. O., Muons (North-Holland Publishing Company, Amsterdam), 1967.

    Google Scholar 

  291. Porter C. E. and Primakoff H., Phys. Rev. Lett., 83 (1951) 849.

    ADS  Google Scholar 

  292. Muto T., Tanifuji M., Inoue K. and Inoue T., “Interaction of μ Meson with Matter, II: Spontaneous Decay of Negative μ Meson”, Prog. Theor. Phys., 8 (1952) 13.

    Article  ADS  MATH  Google Scholar 

  293. Mohr Peter J., Taylor Barry N. and Newell David B., Rev. Mod. Phys., 84 (2012) 1527.

    Article  ADS  Google Scholar 

  294. Tishchenko V. et al. (MuLan Collaboration), Phys. Rev. D, 87 (2013) 052003.

    Article  ADS  Google Scholar 

  295. Suzuki T., Measday D. F. and Roalsvig J. P., “Total nuclear capture rates for negative muons”, Phys. Rev. C, 35 (1987) 2212.

    Article  ADS  Google Scholar 

  296. Kinoshita T. and Sirlin A., Phys. Rev., 108 (1957) 844.

    Article  ADS  Google Scholar 

  297. Kinoshita T. and Sirlin A., Phys. Rev., 113 (1959) 1652.

    Article  ADS  Google Scholar 

  298. Bouchiat C. and Michel L., Phys. Rev., 106 (1957) 170.

    Article  ADS  Google Scholar 

  299. Scheck F., “Muon Physics”, Phys. Rep., 44 (1978) 187.

    Article  ADS  Google Scholar 

  300. Czarnecki A., Garcia i Tomo X. and Marciano W. J., Phys. Rev. D, 84 (2011) 013006.

    Article  ADS  Google Scholar 

  301. Czarnecki A., Garcia i Tormo X. and Marciano W. J., “Muon decay in orbit spectra for μ − e conversion experiments”, Hyperfine Interact., 210 (2012) 19 [arXiv:111 1.4237 [hep-ph]].

    Article  ADS  Google Scholar 

  302. Schanker O., Phys. Rev. D, 25 (1982) 1848.

    Article  ADS  Google Scholar 

  303. Koptev V. P. et al., “Measurement of the lifetimes of Π+ and K+ mesons”, JETP Lett., 61 (1995) 877 (Pisma Zh. Eksp. Teor. Fiz., 61 (1995) 865).

    ADS  Google Scholar 

  304. Li Y. B., Shen C. P. and Yuan C. Z., “Sensitivity Study of Searching for τγμ at HIEPA”, Sci. Bull., 61 (2016) 307 [arXiv:1511.07228 [hep-ex]].

    Article  Google Scholar 

  305. Signorelli G., “A sensitive search for lepton-flavor violation: the MEG experiment and the new LXe calorimetry”, PhD thesis, Scuola Normale Superiore di Pisa (2005), unpublished.

  306. Hincks E. P. and Pontecorvo B., “On The Absence Of Photons Among The Decay Products Of The 2.2-Microsecond Meson”, Can. J. Res. A, 28 (1950) 29, reprinted in Bilenky S. M. et al. (Editors), Bruno Pontecorvo (Società Italiana di Fisica) 1997.

    Article  Google Scholar 

  307. Sard R. D. and Althaus E. J., “A search for Delayed Photons from Stopped Sea Level Cosmic-Ray Mesons”, Phys. Rev., 74 (1948) 1364.

    Article  ADS  Google Scholar 

  308. Brooks M. L. et al. (MEGA Collaboration), “New limit for the family-number non-conserving decay μ+ → e+γ”, Phys. Rev. Lett., 83 (1999) 1521 [arXiv:hep-ex/9905013].

    Article  ADS  Google Scholar 

  309. Ahmed M. et al., “Search for the lepton-family-number nonconserving decay μ+e+γ”, Phys. Rev. D, 65 (2002) 112002 [arXiv:hep-ex/0111030].

    Article  ADS  Google Scholar 

  310. Parker S., Anderson H. L. and Rey C., “Search for the decay μ+ → e+γ”, Phys. Rev. B, 133 (1964) 768.

    Article  ADS  Google Scholar 

  311. Charles A. Rey, “Inner Bremsstrahlung in Muon Decay”, Phys. Rev. B, 135 (1964) 1215.

    Article  Google Scholar 

  312. Frankel S. et al., “New Limit on the e + γ Decay Mode of the Muon”, Phys. Rev. Lett., 8 (1962) 123.

    Article  ADS  Google Scholar 

  313. Povel H. P. et al., “A New Upper Limit For The Decay μ+ → e+γ” Phys. Lett. B, 72 (1977) 183.

    Article  ADS  Google Scholar 

  314. Depommier P. et al., “A New Limit On The μ+ → e+γ Decay”, Phys. Rev. Lett., 39 (1977) 1113.

    Article  ADS  Google Scholar 

  315. van der Schaaf A., Engfer R., Povel H. P., Dey W., Walter H. K. and Petitjean C., “A Search For The Decay μ+ → e+γ”, Nucl. Phys. A, 340 (1980) 249.

    Article  ADS  Google Scholar 

  316. Kinnison W. W. et al., “A Search For μ+ → e+γ”, Phys. Rev. D, 25 (1982) 2846.

    Article  ADS  Google Scholar 

  317. Bowman J. D. et al., “Upper Limit For The Decay μ+ → e+γ”, Phys. Rev. Lett., 42 (1979) 556.

    Article  ADS  Google Scholar 

  318. Bolton R. D. et al., “Search for Rare Muon Decays with the Crystal Box Detector”, Phys. Rev. D, 38 (1988) 2077.

    Article  ADS  Google Scholar 

  319. Cooper Martin D., “μ + → e+γ and related rare decays”, Nucl. Phys. B (Proc. Suppl.), 59 (1997) 209.

    Article  ADS  Google Scholar 

  320. Baranov V. A. et al., “Search for μ+e+e+e− decay”, Sov. J. Nucl. Phys., 53 (1991) 802 (Yad. Fiz., 53 (1991) 1302).

    Google Scholar 

  321. Djilkibaev R. M. and Konoplich R. V., “Rare Muon Decay \({\mu ^ +} \to {e^ +}{e^ +}{e^-}{\nu _e}{\bar \nu _\mu}\)”, Phys. Rev. D, 79 (2009) 073004 [arXiv:0812.1355 [hep-ph]].

    Article  ADS  Google Scholar 

  322. Cheng C. H., Echenard B. and Hitlin D. G., “The next generation of μ → e γ and ß → 3e CLFV search experiments”, arXiv:1309.7679 [physics.ins-det].

  323. Fishbane P. M. and Gaemers K. J. F., “Calculation of the Decay \({\mu ^-} \to {e^-}{e^ +}{e^-}{\nu _\mu}{\bar \nu _e}\)”, Phys. Rev. D, 33 (1986) 159.

    Article  ADS  Google Scholar 

  324. Peric I., “A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology”, Nucl. Instrum. Methods A, 582 (2007) 876.

    Article  ADS  Google Scholar 

  325. Augustin H. et al., “The MuPix high voltage monolithic active pixel sensor for the Mu3e experiment”, JINST, 10 (2015) C03044.

    Article  Google Scholar 

  326. Kirch K., Paul Scherrer Institut Open Users Meeting BV48, available at https://indico.psi.ch/conferenceDisplay.py?confId=4607.

  327. Schöning A., Paul Scherrer Institut Open Users Meeting BV48, available at https://indico.psi.ch/conferenceDisplay.py?confId=4607.

  328. Augustin H. et al., “The MuPix Telescope: A Thin, high Rate Tracking Telescope”, JINST, 12 (2017) C01087 [arXiv:1611.03102 [physics.ins-det]].

    Article  Google Scholar 

  329. Nguyen T. M. (DeeMe Collaboration), “Search for μ → e conversion with DeeMe experiment at J-PARC MLF”, PoS FPCP, 2015 (2015) 060.

    Google Scholar 

  330. DeeMe Collaboration, DeeMe KEK J-PARC Proposal [http://deeme.hep.sci.osaka-u.ac.jp/documents/deeme-proposal-r28.pdf] (2010).

  331. Aprile E. et al. (XENON100 Collaboration), “Likelihood Approach to the First Dark Matter Results from XENON100”, Phys. Rev. D, 84 (2011) 052003 [arXiv:1103.0303 [hep-ex]].

    Article  ADS  Google Scholar 

  332. Kitano R., Koike M. and Okada Y., Phys. Rev. D, 66 (2002) 096002.

    Article  ADS  Google Scholar 

  333. Talks at the “Workshop on compact muon sources”, University of Huddersfield, 12–13 January 2015 (https://indico.cern.ch/event/356972/).

  334. Choi S., Park J. and Roh Y. J., “The design of an optimized muon beamline”, J. Korean Phys. Soc., 66 (2015) 762 [arXiv:1406.2091 [physics.acc-ph]].

    Article  ADS  Google Scholar 

  335. Talks at the XVIII Workshop on Neutrino Factories, NUFACT 2016, Quy Nohn, Vietnam (http://vietnam.in2p3.fr/2016/nufact/index.html).

  336. Xiao R., Liu Y., Xu W., Ni X., Pan Z. and Ye B., “A new muon-pion collection and transport system design using superconducting solenoids based on CSNS”, Chin. Phys. C, 40 (2016) 057004 [arXiv:1510.02891 [physics.acc-ph]].

    Article  ADS  Google Scholar 

  337. Gilinski V. and Matthews J., “Decay of bound muons”, Phys. Rev., 120 (1960) 1450.

    Article  ADS  Google Scholar 

  338. Perkins Donald H., Inroduction to High-Energy Physics, third ed. (Addison-Wesley, Menlo Park) 1986.

    Google Scholar 

  339. Knoll Glenn F., Radiation Detection and Measurement, 3rd edition (John Wiley & Sons, New York) 2000.

    Google Scholar 

  340. Papa A., De Gerone M., Dussoni S., Galli L., Nicolò D. and Signorelli G., “Feasibility study of a high-performance LaBr3(Ce) calorimeter for future lepton flavor violation experiments”, Nucl. Phys. Proc. Suppl., 248–250 (2014) 115.

    Article  ADS  Google Scholar 

  341. Galli L., De Gerone M., Dussoni S., Nicolo D., Papa A., Tenchini F. and Signorelli G., “Timing resolution measurements of a 3 in. lanthanum bromide detector”, Nucl. Instrum. Methods A, 718 (2013) 48.

    Article  ADS  Google Scholar 

  342. Adam J. et al., “The MEG detector for μ+e+γ decay search”, Eur. Phys. J. C, 73 (2013) 2365 [arXiv:1303.2348 [physics.ins-det]].

    Article  ADS  Google Scholar 

  343. Adam J. et al. (MEG Collaboration), “Calibration and monitoring of the MEG experiment by a proton beam from a Cockcroft-Walton accelerator”, Nucl. Instrum. Methods A, 641 (2011) 19.

    Article  ADS  Google Scholar 

  344. Bennet J., “Belle II Physics Prospects, Status and Schedule”, J. Phys.: Conf. Ser., 770 (2016) 012044.

    Google Scholar 

  345. Berger M. J., Coursey J. S., Zucker M. A. and Chang J., 2017. ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (version 1.2.3) (2005) http://physics.nist.gov/Star.

  346. Berger M. J. et al., 2017. XCOM: Photon Cross Section Database (version 1.5) (2010) retrieved Feb. 24,]. -25 -. http://physics.nist.gov/xcom.

  347. Bungau A., Cywinski R., Bungau C., King P. and Lord J., “Simulations of surface muon production in graphite targets”, Phys. Rev. ST Accel. Beams, 16 (2013) 014701.

    Article  ADS  Google Scholar 

  348. Überall H., “Decay electron spectrum from bound μ−-mesons”, Nuovo Cimento, XV (1960) 11.

    Google Scholar 

  349. Dohmen C. et al., “Test of lepton flavour conservation in μ → e conversion in Titanium”, Phys. Lett. B, 317 (1993) 631.

    Article  ADS  Google Scholar 

  350. Rutar G., Bemporad C., Cattaneo P. W., Cei F., Galli L., Kettle P.-R. and Papa A., “A dedicated calibration tool for the MEG and MEG II positron spectrometer”, Nucl. Instrum. Methods A, 824 (2016) 575.

    Article  ADS  Google Scholar 

  351. Carrington R. L. et al., “On the Detection of 50-MeV γ Rays With a Large Modularized NaI(Tl) Detector”, Nucl. Instrum. Methods, 163 (1979) 203.

    Article  ADS  Google Scholar 

  352. Dzhilkibaev R. M. and Lobashev V. M., “On the search for the μ → e conversion process in a nucleus”, Sov. J. Nucl. Phys., 49 (1989) 384.

    Google Scholar 

  353. Jackson J. D., Classical Electromagnetism, 2nd ed., (John Wiley and Sons) paragraph 12.5.

  354. Catanesi M. G. et al. (HARP Collaboration), “The HARP detector at the CERN PS”, Nucl. Instrum. Methods A, 571 (2007) 527.

    Article  ADS  Google Scholar 

  355. Bondar A. E. et al. (Charm-Tau Factory Collaboration), “Project of a Super Charm-Tau factory at the Budker Institute of Nuclear Physics in Novosibirsk”, Phys. Atom. Nucl., 76 (2013) 1072 (Yad. Fiz., 76 (2013) 1132).

    Article  ADS  Google Scholar 

  356. Bevan A. J. et al. (BaBar and Belle Collaborations), “The Physics of the B Factories”, Eur. Phys. J. C, 74 (2014) 3026 [arXiv:1406.6311 [hep-ex]].

    Article  ADS  Google Scholar 

  357. Baldini A. M. et al., “A cryogenic facility for testing the PMTs of the MEG liquid xenon calorimeter”, Nucl. Instrum. Methods A, 566 (2006) 294.

    Article  ADS  Google Scholar 

  358. Baldini A. et al., “A radioactive point-source lattice for calibrating and monitoring the liquid xenon calorimeter of the MEG experiment”, Nucl. Instrum. Methods A, 565 (2006) 589.

    Article  ADS  Google Scholar 

  359. Baldini A. et al., “Absorption of scintillation light in a 100 l liquid xenon gamma ray detector and expected detector performance”, Nucl. Instrum. Methods A, 545 (2005) 753 [physics/0407033].

    Article  ADS  Google Scholar 

  360. Baldini A. et al., “Liquid Xe scintillation calorimetry and Xe optical properties”, IEEE Trans. Dielectr. Electr. Insul., 13 (2006) 547 [physics/0401072 [physics.ins-det]].

    Article  Google Scholar 

  361. Badertscher A. et al., “Development Of “subsurface” Positive Muon Beam At Lampf”, Nucl. Instrum. Methods A, 238 (1985) 200.

    Article  ADS  Google Scholar 

  362. Baldini A. M. et al., “MEG Upgrade Proposal”, arXiv:1301.7225 [physics.ins-det].

  363. Baldini A. M. et al. (The MEG II Collaboration), “The design of the MEG II experiment”, arXiv:1801.04688 [physics.ins-det].

  364. Szafron R. and Czarnecki A., “High-energy electrons from the muon decay in orbit: radiative corrections”, Phys. Lett. B, 753 (2016) 61 [arXiv:1505.05237 [hep-ph]].

    Article  ADS  Google Scholar 

  365. Andreazza A. et al., “What Next: White Paper of the INFN-CSN1”, Frascati Phys. Ser., 60 (2015) 1.

    Google Scholar 

  366. Barlow R. J., “The PRISM/PRIME project”, Nucl. Phys. Proc. Suppl., 218 (2011) 44.

    Article  ADS  Google Scholar 

  367. Bartoszek L. et al. (Mu2e Collaboration), “Mu2e Technical Design Report”, arXiv:1501.05241 [physics.ins-det].

  368. Knoepfel K. et al. (mu2e Collaboration), “Feasibility Study for a Next-Generation Mu2e Experiment”, arXiv:1307.1168 [physics.ins-det].

  369. Papa A., Cavoto G. and Ripiccini E., “Feasibility study of an active target for the MEG experiment”, Nucl. Phys. Proc. Suppl., 248–250 (2014) 121.

    Article  ADS  Google Scholar 

  370. (COMET Collaboration), COMET Phase-I technical design report, http://comet.kek.jp/Documentsfiles/IPNS-Review-2014.pdf.

  371. Ashtari Esfahani A. et al. (Project 8 Collaboration), “Determining the neutrino mass with cyclotron radiation emission spectroscopy — Project 8”, J. Phys. G, 44 (2017) 054004 [arXiv:1703.02037 [physics.ins-det]].

    Article  ADS  Google Scholar 

  372. Betts S. et al., “Development of a Relic Neutrino Detection Experiment at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield”, arXiv:1307.4738 [astro-ph.IM].

  373. Abada A., De Romeri V., Orloff J. and Teixeira A. M., “In-flight cLFV conversion: e − μ, e − Τ and μ − Τ in minimal extensions of the standard model with sterile fermions”, Eur. Phys. J. C, 77 (2017) 304 [arXiv:1612.05548 [hep-ph]].

    Article  ADS  Google Scholar 

  374. Gninenko S. N., Kirsanov M. M., Krasnikov N. V. and Matveev V. A., “Probing lepton flavor violation in muon-neutrino + N → τ + … scattering and μ → τ conversion on nucleons”, Mod. Phys. Lett. A, 17 (2002) 1407 [hep-ph/0106302].

    Article  ADS  Google Scholar 

  375. Gonderinger M. and Ramsey-Musolf M. J., “Electron-to-Tau Lepton Flavor Violation at the Electron-Ion Collider”, JHEP, 1011 (2010) 045 (Erratum: JHEP, 1205 (2012) 047) [arXiv:1006.5063 [hep-ph]].

    Article  ADS  Google Scholar 

  376. Liao W. and Wu X. H., “Charged lepton flavor violation on target at GeV scale”, Phys. Rev. D, 93 (2016) 016011 [arXiv:1512.01951 [hep-ph]].

    Article  ADS  Google Scholar 

  377. Crittenden R. R., Walker W. D. and Ballam J., “Radiative decay modes of the muon”, Phys. Rev., 121 (1961) 1823.

    Article  ADS  Google Scholar 

  378. Baldini A. M. et al. (MEG Collaboration), “Measurement of the radiative decay of polarized muons in the MEG experiment”, Eur. Phys. J. C, 76 (2016) 108 [arXiv:1312.3217 [hep-ex]].

    Article  ADS  Google Scholar 

  379. Geib T., Merle A. and Zuber K., “μ − e+ conversion in upcoming LFV experiments”, Phys. Lett. B, 764 (2017) 157 [arXiv:1609.09088 [hep-ph]].

    Article  ADS  Google Scholar 

  380. Litchfield R. P. (AlCap Collaboration), “Status of the AlCap experiment”, PoS NUFACT, 2014 (2015) 095 [arXiv:1501.04880 [physics.ins-det]].

    Google Scholar 

  381. Csorna S. E. et al. (CLEO collaboration), “Update of the search for the neutrinoless decay τ → μγ”, Phys. Rev. D, 61 (2000) 071101.

    Article  Google Scholar 

  382. Aubert B. et al. (BaBar collaboration), “The BaBar detector”, Nucl. Instrum. Methods Phys. Res. A, 479 (2002) 1.

    Article  ADS  Google Scholar 

  383. Abashian A. et al. (Belle collaboration), “The Belle detector”, Nucl. Instrum. Methods Phys. Res. A, 479 (2002) 117.

    Article  ADS  Google Scholar 

  384. Anastasi A. (g-2 Collaboration), “The new g-2 experiment at Fermilab”, EPJ Web of Conferences, 142 (2017) 01002.

    Article  Google Scholar 

  385. Aushev T. et al., “Physics at Super B Factory”, arXiv:1002.5012 [hep-ex]. Belle II Collaboration, “The Belle II Physics book”, in preparation.

  386. Moulson M. (NA62 Collaboration), “Forbidden Kaon and Pion Decays in NA62”, PoS KAON, 13 (2013) 013 [arXiv:1306.3361 [hep-ex]].

    Google Scholar 

  387. Banerjee S., Bhattacherjee B., Mitra M. and Spannowsky M., “The Lepton Flavour Violating Higgs Decays at the HL-LHC and the ILC”, JHEP, 1607 (2016) 059 [arXiv:1603.05952 [hep-ph]].

    ADS  Google Scholar 

  388. Cavoto G., Papa A., Renga F., Ripiccini E. and Voena C., “The quest for μ and its experimental limiting factors at future high intensity muon beams”, Eur. Phys. J. C, 78 (2018) 37 [arXiv:1707.01805 [hep-ex]].

    Article  ADS  Google Scholar 

  389. Grange J. et al. (Muong − 2 Collaboration), “Muon (g − 2) Technical Design Report”, arXiv:1501.06858 [physics.ins-det].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Calibbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calibbi, L., Signorelli, G. Charged lepton flavour violation: An experimental and theoretical introduction. Riv. Nuovo Cim. 41, 71–174 (2018). https://doi.org/10.1393/ncr/i2018-10144-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2018-10144-0

Navigation