Skip to main content
Log in

Fundamentals and functionalities of silicene, germanene, and stanene

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

Two-dimensional elemental topological insulators including silicene, germanene and stanene are currently the hottest topics in condensed matter physics. We first review the recent progress on electronic and topological properties of their monolayers from a fundamental viewpoint. Next, we describe their experimental realizations by epitaxial growth and their actual physical properties. We start with the description of the topological nature of generic Dirac systems and then apply it to silicene by introducing the spin and valley degrees of freedom. Based on them, we classify all topological insulators in the general honeycomb system. We discuss topological electronics based on honeycomb systems. We introduce the topological Kirchhoff law, which is a conservation law of topological edge states. A field effect topological transistor is proposed based on the topological edge states. We show that the conductance is quantized even in the presence of random distributed impurities. Monolayer topological insulators will be a key for future topological electronics and spin-valleytronics. The outstanding example of the realization of such monolayer Si, Ge and Sn novel artificial allotropes is the canonical 3 × 3 reconstructed epitaxial silicene phase grown in situ under ultra-high vacuum on the silver (111) surface. Its realization in 2012 has preceded the synthesis of germanene, followed by that of stanene, respectively on Au(111) and Bi2Te3 substrates. Further growth of Si and Ge over monolayer epitaxial silicene and germanene leads to layered thin films displaying Dirac fermion characteristics. Amazingly, Si deposition onto Ag(110) templates yields massively parallel, pentasilicene-like nanoribbons, a novel form of one-dimensional silicon. Field Effect Transistors have been already fabricated both with single and multi-layer silicene channels, clearly demonstrating potential applications in electronics of silicene and such related materials, which are directly compatible with the current, ubiquitous, Si-based technology. Finally, enticing prospects are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ezawa M., “Antiferromagnetic topological superconductor and electrically controllable Majorana fermions”, Phys. Rev. Lett., 114 (2015) 056403.

    Article  ADS  Google Scholar 

  2. Vogt P., De Padova P., Quaresima C., Avila J., Frantzeskakis E., Asensio M. C., Resta A., Ealet B. and Le Lay G., “Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon”, Phys. Rev. Lett., 108 (2012) 155501.

    Article  ADS  Google Scholar 

  3. Fleurence A., Friedlein R., Ozaki T., Kawai H., Wang Y. and Yamada-Takamura Y., “Experimental Evidence for Epitaxial Silicene on Diboride Thin Films”, Phys. Rev. Lett., 108 (2012) 245501.

    Article  ADS  Google Scholar 

  4. Day C., “Hot physics”, Physics Today, 25 September 2015.

  5. Dávila M. E., Xian L., Cahangirov S., Rubio A. and Le Lay G., “Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene”, New J. Phys., 16 (2014) 095002.

    Article  ADS  Google Scholar 

  6. Zhu F.-f., Chen W.-j., Xu Yong, Gao C.-l., Guan D.-d., Liu C.-h., Qian D., Zhang S.-C. and Jia J.-f., “Epitaxial growth of two-dimensional stanene”, Nat. Mater., 14 (2015) 1020.

    Article  ADS  Google Scholar 

  7. Cerdá J. I., Sławinska J., Le Lay G., Marele A. C., Gómez-Rodríguez J. M. and Dávila M. E., Nat. Commun., 7 (2016) 13076.

    Article  ADS  Google Scholar 

  8. Tao L., Cinquanta E., Chiappe D., Grazianetti C., Fanciulli M., Dubey M., Molle A. and Akinwande D., “Silicene field-effect transistors operating at room temperature”, Nat. Nanotechnol., 10 (2015) 227.

    Article  ADS  Google Scholar 

  9. Le Lay G., Salomon E. and Angot T., “Silicene: Silicon Conquers the 2D World”, Europhys. News, 47 (2016) 17.

    Article  Google Scholar 

  10. Molle A., Goldberger J., Houssa M., Xu Y., Zhang S.-C. and Akinwande D., “Buckled two-dimensional Xene sheets”, Nat. Mater., 16 (2017) 163.

    Article  ADS  Google Scholar 

  11. Zhang Y., Rubio A. and Le Lay Guy, “Emergent elemental two-dimensional materials beyond graphene”, J. Phys. D: Appl. Phys., 50 (2017) 053004.

    Article  ADS  Google Scholar 

  12. Dávila M. E., Lew Yan Voon L. C., Zhao J. and Le Lay G., Elemental Group IV Two-Dimensional Materials beyond Graphene, in 2D Materials, Elsevier, Semiconductors and Semimetals, Vol. 95 (Elsevier, Amsterdam) 2016, pp. 149–188.

    Google Scholar 

  13. Le Lay G., Salomon E. and Angot T., Silicene, Germanene and Stanene, in Two-Dimensional Materials: Properties and Applications, Vol. 95, edited by Low Tony, Avouris Phaedon, Heinz Tony (Elsevier) 2016.

  14. Salomon E., Beato-Medina D., De Padova P., Angot T. and Le Lay G., Silicene, Springer Handbook of Surface Science, edited by Rocca M., Rahman T. and Vattuatone L. (Springer) 2017.

  15. Cahangirov S., Sahin H., Le Lay G. and Rubio A., Introduction to the Physics of Silicene and Other 2D Materials, Lecture Notes in Physics, Vol. 930 (Springer) 2017.

  16. Ezawa M., “Topological insulator and helical zero mode in silicene under inhomogeneous electric field”, New J. Phys., 14 (2012) 033003.

    Article  ADS  Google Scholar 

  17. Drummond N. D., Zolyomi V. and Falko V. I., “Electrically tunable band gap in silicene”, Phys. Rev. B, 85 (2012) 075423.

    Article  ADS  Google Scholar 

  18. Ezawa M., “Valley-polarized metals and quantum anomalous Hall effect in silicene”, Phys. Rev. Lett., 109 (2012) 055502.

    Article  ADS  Google Scholar 

  19. Ezawa M., “Photoinduced topological phase transition and a single Dirac-cone state in silicene”, Phys. Rev. Lett., 110 (2013) 026603.

    Article  ADS  Google Scholar 

  20. Ezawa M., “Quantized conductance and field-effect topological quantum transistor in silicene nanoribbons”, Appl. Phys. Lett., 102 (2013) 172103.

    Article  ADS  Google Scholar 

  21. Ezawa M., “Monolayer topological insulators: Silicene, Germanene and Stanene”, J. Phys. Soc. Jpn., 84 (2015) 121003.

    Article  ADS  Google Scholar 

  22. Ezawa M. and Nagaosa N., “Interference of topologically protected edge states in silicene nanoribbons”, Phys. Rev. B, 88 (2013) 161406(R).

    Article  ADS  Google Scholar 

  23. Saito R., Dresselhaus G. and Dresselhaus M. S., Physical Properties of Carbon Nanotubes (Imperial College Press, London) 1998.

    Book  MATH  Google Scholar 

  24. Katsnelson M. I., Graphene: Carbon in Two Dimensions (Cambridge University Press, Cambridge) 2012.

    Book  Google Scholar 

  25. Nielsen H. B. and Ninomiya M., “A no-go theorem for regularizing chiral fermions”, Phys. Lett. B, 105 (1981) 219.

    Article  ADS  Google Scholar 

  26. Liu C.-C., Jiang H. and Yao Y., “Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin”, Phys. Rev. B, 84 (2011) 195430.

    Article  ADS  Google Scholar 

  27. Liu C.-C., Feng W. and Yao Y., “Quantum spin Hall effect in silicene and two-dimensional germanium”, Phys. Rev. Lett., 107 (2011) 076802.

    Article  ADS  Google Scholar 

  28. Kane C. L. and Mele E. J., “Quantum spin Hall effect in graphene”, Phys. Rev. Lett., 95 (2005) 226801

    Article  ADS  Google Scholar 

  29. Kane C. L. and Mele E. J., “Z2 topological order and the quantum spin Hall effect”, ibid, 95 (2005) 146802.

    Article  ADS  Google Scholar 

  30. Xu Y., Yan B., Zhang H.-J., Wang J., Xu G., Tang P., Duan W. and Zhang S.-C., “Large-gap quantum spin Hall insulators in tin films”, Phys. Rev. Lett., 111 (2013) 136804.

    Article  ADS  Google Scholar 

  31. Ezawa M., “Spin-valleytronics in silicene: quantum spin Hall-quantum anomalous Hall insulators and single-valley semimetals”, Phys. Rev. B, 87 (2013) 155415.

    Article  ADS  Google Scholar 

  32. Li X., Cao T., Niu Q., Shi J. and Feng J., “Coupling the valley degree of freedom to antiferromagnetic order”, Proc. Natl. Acad. Sci. U.S.A., 110 (2013) 3738.

    Article  ADS  Google Scholar 

  33. Liang Q.-F., Wu L.-H. and Hu X., “Electrically tunable topological state in (111) perovskite materials with an antiferromagnetic exchange field”, New J. Phys., 15 (2013) 063031.

    Article  ADS  Google Scholar 

  34. Thouless D. J., Kohmoto M., Nightingale M. P. and den Nijs M., “Quantized Hall conductance in a two-dimensional periodic potential”, Phys. Rev. Lett., 49 (1982) 405.

    Article  ADS  Google Scholar 

  35. Jackiw R. and Rebbi C., “Solitons with fermion number 1/2”, Phys. Rev. D, 13 (1976) 3398.

    Article  ADS  MathSciNet  Google Scholar 

  36. Datta S., Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge) 1995, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge) 2005.

    Book  Google Scholar 

  37. Muñoz-Rojas F., Jacob D., Fernández-Rossier J. and Palacios J. J., “Coherent transport in graphene nanoconstrictions”, Phys. Rev. B, 74 (2006) 195417.

    Article  ADS  Google Scholar 

  38. Zârbo L. P. and Nikolić B. K., “Spatial distribution of local currents of massless Dirac fermions in quantum transport through graphene nanoribbons”, Europhys. Lett., 80 (2007) 47001.

    Article  ADS  Google Scholar 

  39. Areshkin D. A. and Nikolić B. K., “I-V curve signatures of nonequilibrium-driven band gap collapse in magnetically ordered zigzag graphene nanoribbon two-terminal devices”, Phys. Rev. B, 79 (2009) 205430.

    Article  ADS  Google Scholar 

  40. Li T. C. and Lu S.-P., “Quantum conductance of graphene nanoribbons with edge defects”, Phys. Rev. B, 77 (2008) 085408.

    Article  ADS  Google Scholar 

  41. Sancho M. P. L., Sancho J. M. L. and Rubio J., “Highly convergent schemes for the calculation of bulk and surface Green functions”, J. Phys. F: Met. Phys., 15 (1985) 851.

    Article  ADS  Google Scholar 

  42. Takeda K. and Shiraishi K., “Theoretical possibility of stage corrugation in Si and Ge analogs of graphite”, Phys. Rev. B, 50 (1994) 14916.

    Article  ADS  Google Scholar 

  43. Resta A., Leoni T., Barth C., Ranguis A., Becker C., Bruhn T., Vogt P. and Le Lay G., “Atomic Structures of Silicene Layers Grown on Ag(111): Scanning Tunneling Microscopy and Noncontact Atomic Force Microscopy Observations”, Sci. Rep., 3 (2013) 2399.

    Article  ADS  Google Scholar 

  44. Liu Z.-L., Wang M.-X., Liu C., Jia J.-F., Vogt P., Quaresima C., Ottaviani C., Olivieri B., De Padova P. and Le Lay G., “The fate of the 2√3 × 2√3R(30) silicene phase on Ag(111)”, APL Mater., 2 (2014) 092513.

    Article  ADS  Google Scholar 

  45. Curcella A., Bernard R., Borensztein Y., Resta A., Lazzeri M. and Prévot G., “Determining the atomic structure of the (4 × 4) silicene layer on Ag(111) by combined grazing-incidence x-ray diffraction measurements and first-principles calculations”, Phys. Rev. B, 94 (2016) 165438.

    Article  ADS  Google Scholar 

  46. Vogt P., Capiod P., Berthe M., Resta A., De Padova P., Bruhn T., Le Lay G. and Grandidier B., “Synthesis and electrical conductivity of multilayer silicene”, Appl. Phys. Lett., 104 (2014) 021602.

    Article  ADS  Google Scholar 

  47. Chen L., Liu C.-C., Feng B., He X., Cheng P., Ding Z., Meng S., Yao Y. and Wu K., “Evidence for Dirac fermions in a honeycomb lattice based on silicon”, Phys. Rev. Lett., 109 (2012) 056804.

    Article  ADS  Google Scholar 

  48. De Padova P., Generosi A., Paci B., Ottaviani C., Quaresima C., Olivieri B., Salomon E., Angot T. and Le Lay Guy, “Multilayer silicene: clear evidence”, 2D Mater., 3 (2016) 031011.

    Article  Google Scholar 

  49. Le Lay G., “Physics and Electronics of the Noble-Metal Elemental-Semiconductor Interface Formation -a Status-Report”, Surf. Sci., 132 (1983) 169.

    Article  ADS  Google Scholar 

  50. Mahatha S. K., Moras P., Sheverdyaeva P. M., Flammini R., Horn K. and Carbone C., “Evidence for a diamondlike electronic band structure of Si multilayers on Ag(111)”, Phys. Rev. B, 92 (2015) 245127.

    Article  ADS  Google Scholar 

  51. Borensztein Y., Curcella A., Royer S. and Prévot G., “Silicene multilayers on Ag(111) display a cubic diamondlike structure and a 3 × √3 reconstruction induced by surfactant Ag atoms”, Phys. Rev. B, 92 (2015) 155407.

    Article  ADS  Google Scholar 

  52. Takahashi T., Nakatani S., Okamoto N. and Kikuta S., “Study on the Si(111)√3 × √3-Ag surface structure by x-ray diffraction”, Jpn. J. Appl. Phys. Part 2, 27 (1988) L753.

    Article  Google Scholar 

  53. Gill T. G., Fleurence A., Warner B., Prüser H., Friedlein R., Sadowski J. T., Hirjibehedin C. F. and Yamada-Takamura Yukiko, “Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB2”, 2D Mater., 4 (2017) 021015.

    Article  Google Scholar 

  54. De Padova P., Ottaviani C., Quaresima C., Olivieri B., Imperatori P., Salomon E., Angot T., Quagliano L., Romano C., Vona A., Muniz-Miranda M., Generosi A., Paci B. and Le Lay G., “24h stability of thick multilayer silicene in air”, 2D Mater., 1 (2014) 021003.

    Article  Google Scholar 

  55. Avila J., De Padova P., Cho S., Colambo I., Lorcy S., Quaresima C., Vogt P., Resta A., Le Lay G. and Asensio M. C., “Presence of gapped silicene-derived band in the prototypical (3 × 3) silicene phase on silver (111) surfaces”, J. Phys.: Condens. Matter, 25 (2013) 262001.

    ADS  Google Scholar 

  56. Guo Z.-X., Furuya S., Iwata J.-I. and Oshiyama A., “Absence and presence of Dirac electrons in silicene on substrates”, Phys. Rev. B, 87 (2013) 235435.

    Article  ADS  Google Scholar 

  57. Gori P., Pulci O., Ronci F., Colonna S. and Bechstedt F. F., “Origin of Diraccone-like feaures in silicon structures on Ag(111) and Ag(110)”, J. Appl. Phys., 114 (2013) 113710.

    Article  ADS  Google Scholar 

  58. Huang S., Kang W. and Yang L., “Electronic structure and quasiparticle bandgap of silicene structures”, Appl. Phys. Lett., 102 (2013) 133106.

    Article  ADS  Google Scholar 

  59. Cahangirov S., Audiffred M., Tang P., Iacomino A., Duan W., Merino G. and Rubio A., “Electronic structure of silicene on Ag(111): Strong hybridization effects”, Phys. Rev. B, 88 (2013) 035432.

    Article  ADS  Google Scholar 

  60. Mahatha S. K., Moras P., Bellini V., Sheverdyaeva P. M., Struzzi C., Petaccia L. and Carbone C., “Silicene on Ag(111): A honeycomb lattice without Dirac bands”, Phys. Rev. B, 89 (2014) 201416(R).

    Article  ADS  Google Scholar 

  61. Sheverdyaeva P. M., Mahatha S. K., Moras P., Petaccia L., Fratesi G., Onida G. and Carbone C., “Electronic States of Silicene Allotropes on Ag(111)”, ACS Nano, 11 (2017) 975.

    Article  Google Scholar 

  62. Fukaya Y., Mochizuki I., Maekawa M., Wada K., Hyodo T., Matsuda Y. and Kawasuso A., “Structure of silicene on a Ag(111) surface studied by reflection high-energy positron diffraction”, Phys. Rev. B, 88 (2013) 205413.

    Article  ADS  Google Scholar 

  63. Tsoutsou D., Xenogiannopoulou E., Golias E., Tsipas P. and Dimoulas A., “Evidence for hybrid surface metallic band in (4 × 4) silicene on Ag(111)”, Appl. Phys. Lett., 103 (2013) 231604.

    Article  ADS  Google Scholar 

  64. Feng Y. et al., “Direct evidence of interaction-induced Dirac cones in a monolayer silicene/Ag(111) system”, Proc. Natl. Acad. Sci. U.S.A., 113 (2016) 14656.

    Article  ADS  Google Scholar 

  65. Chen L., Liu C.-C., Feng B., He X., Cheng P., Ding Z., Meng S., Yao Y. and Wu K., “Evidence of Dirac Fermions in a Honeycomb Lattice Based on Silicon”, Phys. Rev. Lett., 109 (2012) 056804.

    Article  ADS  Google Scholar 

  66. Hoffmann R., “Small but Strong Lessons from Chemistry for Nanoscience”, Angew. Chem. Int. Ed., 52 (2013) 93.

    Article  ADS  Google Scholar 

  67. Kamal C., Chakrabarti A., Banerjee A. and Deb S. K., “Silicene beyond mono-kayers-different stacking configurationsand their properties”, J. Phys.: Condens. Matter., 25 (2013) 085508.

    ADS  Google Scholar 

  68. Cahangirov S., Özçelik V. O., Rubio A. and Ciraci S., “Silicite: The layered allotrope of silicon”, Phys. Rev. B, 90 (2014) 085426.

    Article  ADS  Google Scholar 

  69. De Padova P. et al., “Evidence of Dirac fermions in multilayer silicene”, Appl. Phys. Lett., 102 (2013) 163106.

    Article  ADS  Google Scholar 

  70. De Padova P., Avila J., Resta A., Razado-Colambo I., Quaresima C., Ottaviani C., Olivieri B., Bruhn T., Vogt P., Asensio M. C. and Le Lay C, “The quasiparticles band dispersion in epitaxial multilayer silicene”, J. Phys.: Condens. Matter, 25 (2013) 382202.

    Google Scholar 

  71. Salomon E., Ajjouri R. E., Le Lay G. and Angot T., “Growth and structural properties of silicene at multilayer coverage”, J. Phys.: Condens. Matter, 25 (2014) 185003.

    Google Scholar 

  72. Crain J. N., Altmann K. N., Bromberger C. and Himpsel F. J., “Fermi surfaces of surface states on Si(111)-Ag, Au”, Phys. Rev. B, 66 (2002) 205302.

    Article  ADS  Google Scholar 

  73. Shirai T., Shirasawa T., Hirahara T., Fukui N., Takahashi T. and Hasegawa S., “Structure determination of multilayer silicene grown on Ag(111) films by electron diffraction: Evidence for Ag segregation at the surface”, Phys. Rev. B, 89 (2014) 241403(R).

    Article  ADS  Google Scholar 

  74. Yamagami T., Sone J., Yamagami T., Nakatsuji K. and Hirayama H., “Surfactant role of Ag atoms in the growth of Si layers on Si(111) √3 × √3-Ag substrates”, Appl. Phys. Lett., 105 (2014) 151603.

    Article  ADS  Google Scholar 

  75. Du Y., Zhuang J., Wang J., Li Z., Liu H., Zhao J., Xu X., Feng H., Chen L., Wu K., Wang X. and Dou S. X., “Quasi-freestanding epitaxial silicene on Ag(111) by oxygen intercalation”, Sci. Adv., 2 (2016) e1600067.

    Article  ADS  Google Scholar 

  76. Li Z., Zhuang J., Chen L., Ni Z., Liu C., Wang L., Xu X., Wang J., Pi X., Wang X., Du Y., Wu K. and Dou S. X., “Observation of van Hove Singularities in Twisted Silicene Multilayers”, ACS Cent. Sci., 2 (2016) 517.

    Article  Google Scholar 

  77. Yan J.-A., Stein R., Schaefer D. M., Wang X.-Q. and Chou M. Y., “Electron-phonon coupling in two-dimensional silicene and germanene”, Phys. Rev. B, 88 (2013) 121403(R).

    Article  ADS  Google Scholar 

  78. Cahangirov S., Topsakal M., Aktürk E., Şahin H. and Ciraci S., “Two- and One Dimensional honeycomb structure of Silicon and Germanium”, Phys. Rev. Lett., 102 (2009) 236804.

    Article  ADS  Google Scholar 

  79. Li X., Mullen J. T., Jin Z., Borysenko K. M., Buongiorno Nardelli M. and Kim K. W., “Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles”, Phys. Rev. B, 87 (2013) 115418.

    Article  ADS  Google Scholar 

  80. Solonenko D., Gordan O. D., Le Lay G., Şahin H., Cahangirov S., Zahn D. R. T. and Vogt Patrick, “2D vibrational properties of epitaxial silicene on Ag(111)”, 2D Mater., 4 (2017) 015008.

    Article  Google Scholar 

  81. Satta M., Colonna S., Flammini R., Cricenti A. and Ronci F., “Silicon Reactivity at the Ag(111) Surface”, Phys. Rev. Lett., 115 (2015) 026102.

    Article  ADS  Google Scholar 

  82. Cinquanta E., Scalise E., Chiappe D., Grazianetti C., van den Broek B., Houssa M., Fanciulli M. and Molle A., “Getting through the Nature of Silicene: An sp2-sp3 Two-Dimensional Silicon Nanosheet”, J. Phys. Chem. C, 117 (2013) 16719.

    Article  Google Scholar 

  83. Zhuang J., Xu X., Du Y., Wu K., Chen L., Hao W., Wang J., Yeoh W. K., Wang X. and Dou S. X., “Investigation of electron-phonon coupling in epitaxial silicene by in situ Raman spectroscopy”, Phys. Rev. B, 91 (2015) 161409(R).

    Article  ADS  Google Scholar 

  84. Aizawa T., Suehara S. and Otani S., “Phonon dispersion of silicene on ZrB2(0001)”, J. Phys.: Condens. Matter, 27 (2015) 305002.

    Google Scholar 

  85. Acun A., Poelsema B., Zandvliet H. J. W. and van Gastel R., “The instability of silicene on Ag(111)”, Appl. Phys. Lett., 103 (2013) 263119.

    Article  ADS  Google Scholar 

  86. Solonenko D., Gordan O. D., Le Lay G., Zahn D. R. T. and Vogt P., “Comprehensive Raman study of epitaxial silicene-related phases on Ag(111)”, Beilstein J. Nanotechnol., 8 (2017) 1357.

    Article  Google Scholar 

  87. Li L., Lu S.-z., Pan J., Qin Z., Wang Y.-q., Wang Y., Cao G.-y., Du S. and Gao H.-J., “Buckled germanene formation on Pt(111)”, Adv. Mater., 26 (2014) 4820.

    Article  Google Scholar 

  88. Švec M., Hapala P., Ondrácček M., Merino P., Blanco-Rey M., Mutombo P., Vondracek M., Polyak Y., Cháb V., Martín Gago J. A. and Jelínek P., “Silicene versus two-dimensional ordered silicide: Atomic and electronic structure of Si(√19 × √19)R23.4/Pt(111)”, Phys. Rev. B, 89 (2014) 201412(R).

    Article  ADS  Google Scholar 

  89. Ho C.-S., Banerjee S., Batzill M., Beck D. E. and Koel B. E., “Formation and structure of a (√19 × √19)R23.4-Ge/Pt(111) surface alloy”, Surface Sci., 603 (2009) 1161.

    Article  ADS  Google Scholar 

  90. Li F., Wei W., Yu L., Huang B. and Dai Y., “Interface effects between germanene and Au(111) from first principles”, J. Phys. D: Appl. Phys., 50 (2017) 115301.

    Article  ADS  Google Scholar 

  91. Dávila M. E. and Le Lay G., “Few layer epitaxial germanene: a novel two-dimensional Dirac material”, Sci. Rep., 6 (2016) 20714.

    Article  ADS  Google Scholar 

  92. Schröter N. B. M., Watson M. D., Duffy L. B., Hoesch M., Chen Y., Hesjedal T. and Kim T. K., “Emergence of Dirac-like bands in the monolayer limit of epitaxial Ge films on Au(111)”, 2D Mater., 4 (2017) 031005.

    Article  Google Scholar 

  93. Wang Y., Li J., Xiong J., Pan Y., Ye M., Guo Y., Zhang H., Quhe R. and Lu J., “Does the Dirac cone of germanene exist on metal substrates?”, Phys. Chem. Chem. Phys., 18 (2016) 19451.

    Article  Google Scholar 

  94. Cantero E. D., Solis L. M., Tong Y., Fuhr J. D., Martiarene M. L., Grizzi O. and Sánchez E. A., “Growth of germanium on Au(111): formation of germanene or intemixing of Au and Ge atoms?”, Phys. Chem. Chem. Phys., 19 (2017) 18580.

    Article  Google Scholar 

  95. Derivaz M., Dentel D., Stephan R., Hanf M.-C., Mehdaoui A., Sonnet P. and Pirri C., “Continuous Germanene Layer on Al(111)”, Nano Lett., 15 (2015) 2510.

    Article  ADS  Google Scholar 

  96. Stephan R., Hanf M. C., Derivaz M., Dentel D., Asensio M. C., Avila J., Mehdaoui A., Sonnet P. and Pirri C., “Germanene on Al(111): Interface Electronic States and Charge Transfer”, J. Phys. Chem. C, 120 (2016) 1580.

    Article  Google Scholar 

  97. Zhang L., Bampoulis P., van Houselt A. and Zandvliet H. J. W., “Two-dimensional Dirac signature of germanene”, Appl. Phys. Lett., 107 (2015) 111605.

    Article  ADS  Google Scholar 

  98. Qin Z., Pan J., Lu S., Shao Y., Wang Y., Du S., Gao H.-J. and Cao G., “Direct Evidence of Dirac Signature in Bilayer Germanene Islands on Cu(111)”, Adv. Mater., 29 (2017) 1606046.

    Article  Google Scholar 

  99. d’Acapito F., Torrengo S., Xenogiannopoulou E., Tsipas P., Marquez Velasco J., Tsoutsouand D. and Dimoulas A., “Evidence for Germanene growth on epitaxial hexagonal (h)-AlN on Ag(111)”, J. Phys.: Condens. Matter, 28 (2016) 045002.

    ADS  Google Scholar 

  100. Chiappe D., Scalise E., Cinquanta E., Grazianetti C, van den Broek B., Fanciulli M., Houssa M. and Molle A., “Two-Dimensional Si Nanosheets with Local Hexagonal Structure on a MoS2 Surface”, Adv. Mater., 26 (2014) 2096.

    Article  Google Scholar 

  101. Zhang L., Bampoulis P., Rudenko A. N., Yao Q., van Houselt A., Poelsema B., Katsnelson M. I. and Zandvliet H. J. W., “Structural and Electronic Properties of Germanene on MoS2”, Phys. Rev. Lett., 116 (2016) 256804.

    Article  ADS  Google Scholar 

  102. Persichetti L., Jardali F., Vach H., Sgarlata A., Berbezier I., De Crescenzi M. and Balzarotti A., “van der Waals Heteroepitaxy of Germanene Islands on Graphite”, J. Phys. Chem. Lett., 7 (2016) 3246.

    Article  Google Scholar 

  103. Gou J., Zhong Q., Sheng S., Li W., Cheng P., Li H., Chen L. and Wu K., “Strained monolayer germanene with 1 × 1 lattice on Sb(111)”, 2D Mater., 3 (2016) 045005.

    Article  Google Scholar 

  104. Fiori G., Bonaccorso F., Iannaccone G., Palacios T., Neumaier D., Seabaugh A., Banerjee S. K. and Colombo L., “Electronics based on two-dimensional materials”, Nat. Nanotech., 9 (2014) 768.

    Article  ADS  Google Scholar 

  105. Novoselov K., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V. and Firsov A. A., “Electric field effect in atomically thin carbon films”, Science, 306 (2004) 666.

    Article  ADS  Google Scholar 

  106. Houssa M., Dimoulas A. and Molle A. (Editors), 2D Materials for Nanoelectronics ((CRC Press, Boca Raton (Taylor & Francis Group)) 2016.

    Google Scholar 

  107. Shahrjerdi D. and Bedell S. W., “Extremely Flexible Nanoscale Ultrathin Body Silicon Integrated Circuits on Plastic”, Nano Lett., 13 (2013) 315.

    Article  ADS  Google Scholar 

  108. Zhuang J., Xu X., Peleckis G., Hao W., Dou S. X. and Du Y., “Silicene: A Promising Anode for Lithium-Ion Batteries”, Adv. Mater., 29 (2017) 1606716.

    Article  Google Scholar 

  109. Scalise E., Cinquanta E., Houssa M., van den Broek B., Chiappe D., Grazianetti C., Pourtois G., Ealet B., Molle A., Fanciulli M., Afanasev V. V. and Stesmans A., “Vibrational properties of epitaxial silicene layers on (111) Ag”, Appl. Surf. Sci., 291 (2014) 113.

    Article  ADS  Google Scholar 

  110. Cinquanta E., Fratesi G., Dal Conte S., Grazianetti C., Scotognella F., Stagira S., Vozzi C., Onida G. and Molle A., “Optical response and ultrafast carrier dynamics of the silicene-silver interface”, Phys. Rev. B, 92 (2015) 165427.

    Article  ADS  Google Scholar 

  111. Molle A., Lamperti A., Rotta D., Fanciulli M., Cinquanta E. and Grazianetti C., “Electron Confinement at the Si/MoS2 Heterosheet Interface”, Adv. Mater. Interfaces, 3 (2016) 1500619.

    Article  Google Scholar 

  112. Zhuang J., Gao N., Li Z., Xu X., Wang J., Zhao J., Dou S. X. and Du Y., “Cooperative Electron-Phonon Coupling and Buckled Structure in Germanene on Au(111)”, ACS Nano, 11 (2017) 3553.

    Article  Google Scholar 

  113. Sadeddine S., Enriquez H., Bendounan A., Kumar Das P., Vobornik I., Kara A., Mayne A. J., Sirotti F., Dujardin G. and Oughaddou H., “Compelling experimental evidence of a Dirac cone in the electronic structure of a 2D Silicon layer”, Sci. Rep., 7 (2017) 44400.

    Article  ADS  Google Scholar 

  114. Zhang J. L., Zhao S., Han C., Wang Z., Zhong S., Sun S., Guo R., Zhou X., Gu G. D., Yuan K. D., Li Z. and Chen W., “Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus”, Nano Lett., 16 (2016) 4903.

    Article  ADS  Google Scholar 

  115. Mannix A. J., Zhou X.-F., Kiraly B., Wood J. D., Alducin D., Myers B. D., Liu X., Fisher B. L., Santiago U., Guest J. R., Yacaman M. J., Ponce A., Oganov A. R., Hersam M. C. and Guisinger N. P., “Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs”, Science, 350 (2015) 1513.

    Article  ADS  Google Scholar 

  116. Feng B., Zhang J., Zhong Q., Li W., Li S., Li H., Cheng P., Meng S., Chen L. and Wu K., “Experimental realization of two-dimensional boron sheets”, Nat. Chem., 8 (2016) 563.

    Article  Google Scholar 

  117. Scalise E., Houssa, Cinquanta E., Grazianetti C., van den Broek B., Pourtois G., Stesmans A., Fanciulli M. and Molle A., “Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S, Se, Te) chalchogenide templates”, 2D Mater., 1 (2014) 011010.

    Article  Google Scholar 

  118. Chiappe D., Grazianetti C., Tallarida G., Fanciulli M. and Molle A., “Local electronic properties of corrugated silicene phases”, Adv. Mater., 24 (2012) 5088.

    Article  Google Scholar 

  119. Feng B., Ding Z., Meng S., Yao Y., He X., Cheng P., Chen L. and Wu K., “Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111)”, Nano Lett., 12 (2012) 3507.

    Article  ADS  Google Scholar 

  120. Grazianetti C., Cinquanta E., Tao L., De Padova P., Quaresima C., Ottaviani C., Akinwande D. and Molle A., “Silicon Nanosheets: Crossover between Multilayer Silicene and Diamond-like Growth Regime”, ACS Nano, 11 (2017) 3376.

    Article  Google Scholar 

  121. Bianco E., Butler S., Jiang S., Restrepo O. D., Windl W. and Goldberger J., “Stability and Exfoliation of Germanane: A Germanium Graphane Analogue”, ACS Nano, 7 (2013) 4414.

    Article  Google Scholar 

  122. Houssa M., Scalise E., Sankaran K., Pourtois G., Afanasev V. V. and Stesmans A., “Electronic properties of hydrogenated silicene and germanene”, Appl. Phys. Lett., 98 (2011) 223107.

    Article  ADS  Google Scholar 

  123. Madhushankar B. N., Kaverzin A., Giousis T., Potsi G., Gournis D., Rudolf P., Blake G. R., van der Wal C. H. and van Wees B. J., “Electronic properties of germanane field-effect transistors”, 2D Mater., 4 (2017) 021009.

    Article  Google Scholar 

  124. Young J. R., Chitara B., Cultrara N. D., Arguilla M. Q., Jiang S., Fan F., Johnston-Halperin E. and Goldberger J. E., “Water activated doping and transport in multilayered germanane crystals”, J. Phys.: Condens. Matter, 28 (2016) 034001.

    ADS  Google Scholar 

  125. Nakano H., Mitsuoka T., Harada M., Horibuchi K., Nozaki H., Takahashi N., Nonaka T., Seno Y. and Nakamura H., “Soft Synthesis of Single-Crystal Silicon Monolayer Sheets”, Angew. Chem., Int. Ed., 45 (2006) 6303.

    Article  Google Scholar 

  126. Noguchi E., Sugawara K., Yaokawa R., Hitosugi T., Nakano H. and Takahashi T., “Direct Observation of Dirac Cone in Multilayer Silicene Intercalation Compound CaSi2”, Adv. Mater., 27 (2015) 856.

    Article  Google Scholar 

  127. Beato Medina D., Salomon E., Le Lay G. and Angot T., J. Electron Spectrosc. Relat. Phenom., 219 (2017) 57.

    Article  Google Scholar 

  128. Solonenko D., Dzhagan V., Cahangirov S., Bacaksiz C., Sahin H., Zahn D. R. T. and Vogt P., “Hydrogen-induced sp2-sp3 rehybridization in epitaxial silicene”, Phys. Rev. B, 96 (2017) 235423.

    Article  ADS  Google Scholar 

  129. Qiu J., Fu H., Xu Y., Oreshkin A. I., Shao T., Li H., Meng S., Chen L. and Wu K., “Ordered and Reversible Hydrogenation of Silicene”, Phys. Rev. Lett., 114 (2015) 126101.

    Article  ADS  Google Scholar 

  130. Tuilier M. H., Wetzel P., Pirri C., Bolmont D. and Gewinner G., “Interfacial structureof two-dimensional epitaxial Er silicide on Si(111)”, Phys. Rev. B, 50 (1994) 2333.

    Article  ADS  Google Scholar 

  131. Angot T., Koulmann J. J., Bolmont D. and Gewinner G., “Frequency shift of the Si-H vibrational modes on erbium silicide measured by HREELS”, Surf. Sci., 368 (1996) 190.

    Article  ADS  Google Scholar 

  132. Wang W., Olovsson W. and Uhrberg R. I. G., “Band structure of hydrogenated silicene on Ag(111): Evidence for half-silicane”, Phys. Rev. B, 93 (2016) 081406(R).

    Article  ADS  Google Scholar 

  133. Podsiadły-Paszkowska A. and Krawiec M., “Tuning the Electronic Structure of Hydrogen-Decorated Silicene”, Condens. Matter, 2 (2017) 1.

    Article  Google Scholar 

  134. Zhang S., Zhou J., Wang G., Chen X., Kawazoe Y. and Jenac P., “Penta-graphene: A new carbon allotrope”, Proc. Natl. Acad. Sci. U.S.A., 112 (2015) 2372.

    Article  ADS  Google Scholar 

  135. Ding Y. and Wang Y., “Hydrogen-induced stabilization and tunable electronic structures of penta-silicene: a computational study”, J. Mater. Chem. C, 3 (2015) 11341.

    Article  Google Scholar 

  136. Aierken Y., Leenaerts O. and Peeters F. M., “A first-principles study of stable few-layer penta-silicene”, Phys. Chem. Chem. Phys., 18 (2016) 18486.

    Article  Google Scholar 

  137. Leandri C., Le Lay G., Aufray B., Girardeaux C., Avila J., Dávila M. E., Asensio M. C., Ottaviani C. and Cricenti A., Surf. Sci., 574 (2005) L9.

    Article  ADS  Google Scholar 

  138. Sahaf H., Masson L., Léandri C., Aufray B., Le Lay G. and Ronci F., “Formation of a one-dimensional grating at the molecular scale by self-assembly of straight silicon nanowires”, Appl. Phys. Lett., 90 (2007) 263110.

    Article  ADS  Google Scholar 

  139. Prévot G., Hogan C., Léoni T., Bernard R., Moyen E. and Masson L., “Si nanoribbons on Ag(110) studied by grazing incidence x-ray diffraction, scanning tunneling microscopy, and density-functional theory: evidence of a pentamer chain structure”, Phys. Rev. Lett., 117 (2016) 276102.

    Article  Google Scholar 

  140. De Padova P., Perfetti P., Olivieri B., Quaresima C., Ottaviani C. and Le Lay G., “1D graphene-like silicon systems: silicenenano-ribbons”, J. Phys.: Condens. Matter, 24 (2012) 223001.

    ADS  Google Scholar 

  141. Yuhara J., Fujii Y., Nishino K., Isobe N., Nakatake M., Xian L. D., Rubio A. and Le Lay G., “Large area planar stanene epitaxially grown on Ag(111)”, 2D Mater., 5 (2018) 025002.0.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ezawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezawa, M., Salomon, E., De Padova, P. et al. Fundamentals and functionalities of silicene, germanene, and stanene. Riv. Nuovo Cim. 41, 175–224 (2018). https://doi.org/10.1393/ncr/i2018-10145-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2018-10145-y

Navigation