Skip to main content
Log in

High-precision innovative sensing with continuous-variable optical states

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

When applied to practical problems, the very laws of quantum mechanics can provide a unique resource to beat the limits imposed by classical physics: this is the case of quantum metrology and high-precision sensing. Here we review the main results obtained in the recent years at the Quantum Technology Lab of the Department of Physics “Aldo Pontremoli” of the University of Milan, also in collaboration with national and international institutions. In particular we focus on the application of continuous-variable optical quantum states and operations to improve different fields of research, ranging from interferometry to more fundamental problems, such as the testing of quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kwiat P. G., Mattle K., Weinfurter H., Zeilinger A., Sergienko A. V. and Shih Y., Phys. Rev. Lett., 75 (1995) 4337.

    Article  ADS  Google Scholar 

  2. Cialdi S., Brivio D. and Paris M. G. A., Phys. Rev. A, 81 (2010) 042322.

    Article  ADS  Google Scholar 

  3. Bennett C. H. and Brassard G., in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 (IEEE Press, New York) 1984, p. 175.

    Google Scholar 

  4. Hu J.-Y., Yu B., Jing M.-Y., Xiao L. T., Jia S.-T., Qin G.-Q., and Long G.-L., Light: Sci. Appl., 5 (2016) e16144.

    Article  Google Scholar 

  5. Giovannetti V., Lloyd S. and Maccone L., Phys. Rev. Lett., 96 (2006) 010401.

    Article  ADS  MathSciNet  Google Scholar 

  6. Roccia E., Gianani I., Mancino L., Sbroscia M., Somma F., Genoni M. G. and Barbieri M., Quantum Sci. Technol., 3 (2018) 01LT01.

    Article  Google Scholar 

  7. Crespi A., Osellame R., Ramponi R., Brod D. J., Galvao E. F., Spagnolo N., Vitelli C., Maiorino E., Mataloni P. and Sciarrino F., Nat. Photon., 7 (2013) 545.

    Article  ADS  Google Scholar 

  8. Spring J. B., Metcalf B. J., Humphreys P. C., Kolthammer W. S., Jin X.-M., Barbieri M., Datta A., Thomas-Peter N., Langford N. K., Kundys D., Gates J. C., Smith B. J., Smith P. G. R. and Walmsley A. I., Science, 339 (2013) 798.

    Article  ADS  Google Scholar 

  9. Dinani H. T. and Berry D. W., Phys. Rev A, 90 (2014) 023856.

    Article  ADS  Google Scholar 

  10. Weedbrook C., Pirandola S., Garcá-Patrón R., Cerf N. J., Ralph T. C., Shapiro J. H. and Lloyd S., Rev. Mod. Phys., 84 (2012) 621.

    Article  ADS  Google Scholar 

  11. Adesso G., Ragy S. and Lee A. R., Open Syst. Inf. Dyn., 21 (2014) 440001.

    Article  Google Scholar 

  12. Usenko V. C., Heim B., Peuntinger C., Wittmann C., Marquardt C., Leuchs G. and Filip R., New J. Phys., 14 (2012) 093048.

    Article  ADS  Google Scholar 

  13. Vallone G., Bacco D., Dequal D., Gaiarin S., Luceri V., Bianco G. and Villoresi P., Phys. Rev. Lett., 115 (2015) 040502.

    Article  ADS  Google Scholar 

  14. Allevi A., Lamperti M., Bondani M., Perǐna J. Jr., Michálek V., Haderka O. and Machulka R., Phys. Rev. A, 88 (2013) 063807.

    Article  ADS  Google Scholar 

  15. Usenko V. C., Ruppert L. and Filip R., Opt. Express, 23 (2015) 31534.

    Article  ADS  Google Scholar 

  16. Silberhorn Ch., Korolkova N. and Leuchs G., Phys. Rev. Lett., 88 (2002) 167902.

    Article  ADS  Google Scholar 

  17. Olivares S. and Paris M. G. A., Int. J. Mod. Phys. B, 27 (2013) 1345024.

    Article  ADS  Google Scholar 

  18. Paris M. G. A., Int. J. Quantum Inf., 7 (2009) 125.

    Article  Google Scholar 

  19. Helstrom C. W., Quantum Detection and Estimation Theory (Academic, New York) 1976.

    MATH  Google Scholar 

  20. Braunstein S. L. and Caves C. M., Phys. Rev. Lett., 72 (1994) 3439.

    Article  ADS  MathSciNet  Google Scholar 

  21. Braunstein S. L., Caves C. M. and Milburn G. J., Ann. Phys. (NY), 247 (1996) 135.

    Article  ADS  Google Scholar 

  22. Brody D. C. and Hughston L. P., Proc. R. Soc. London, Ser. A, 454 (1998) 2445; 455 (1999) 1683.

    Article  ADS  Google Scholar 

  23. Szczykulska M., Baumgratz T. and Datta A., Adv. Phys. X, 1 (2016) 621.

    Google Scholar 

  24. Brunelli M., Olivares S., Paternostro M. and Paris M. G. A., Phys. Rev. A, 86 (2012) 012125.

    Article  ADS  Google Scholar 

  25. Bina M., Amelio I. and Paris M. G. A., Phys. Rev. E, 93 (2016) 052118.

    Article  ADS  Google Scholar 

  26. Rossi M. A. C., Bina M., Paris M. G. A., Genoni M. G., Adesso G. and Tufarelli T., Quantum Sci. Technol., 2 (2017) 01LT01.

    Article  Google Scholar 

  27. Genoni M. G., Olivares S. and Paris M. G. A., Phys. Rev. Lett., 106 (2011) 153603.

    Article  ADS  Google Scholar 

  28. Genoni M. G., Olivares S., Brivio D., Cialdi S., Cipriani D., Santamato A., Vezzoli S. and Paris M. G. A., Phys. Rev. A, 85 (2012) 043817.

    Article  ADS  Google Scholar 

  29. Bina M., Grasselli F. and Paris M. G. A., Phys. Rev. A, 97 (2018) 012125.

    Article  ADS  Google Scholar 

  30. Tamascelli D., Benedetti C., Olivares S. and Paris M. G. A., Phys. Rev. A, 94 (2016) 042129.

    Article  ADS  Google Scholar 

  31. Rossi M. A. C., Giani T. and Paris M. G. A., Phys. Rev. D, 94 (2017) 024014.

    Article  ADS  Google Scholar 

  32. Seveso L., Peri V. and Paris M. G. A., J. Phys A: Math. Theor., 50 (2017) 235301.

    Article  ADS  Google Scholar 

  33. Sparaciari C., Olivares S. and Paris M. G. A., Phys. Rev. A, 93 (2016) 023810.

    Article  ADS  Google Scholar 

  34. Glauber R. J., Phys. Rev., 131 (1963) 2766.

    Article  ADS  MathSciNet  Google Scholar 

  35. Abadie J. et al. (LIGO Scientific Collaboration), Nat. Phys., 7 (2011) 962.

    Article  Google Scholar 

  36. Demkowicz-Dobrzański R., Jarzyna M. and Kołodyśky J., Prog. Opt., 60 (2015) 345.

    Article  ADS  Google Scholar 

  37. Sparaciari C., Olivares S. and Paris M. G. A., J. Opt. Soc. Am. B, 32 (2015) 1354.

    Article  ADS  Google Scholar 

  38. Paris M. G. A., Phys. Lett. A, 201 (1995) 132.

    Article  ADS  Google Scholar 

  39. Olivares S. and Paris M. G. A., Opt. Spectrosc., 103 (2007) 231.

    Article  ADS  Google Scholar 

  40. Pezzè L. and Smerzi A., Phys. Rev. Lett., 100 (2008) 073601.

    Article  ADS  Google Scholar 

  41. Lang M. D. and Caves C. M., Phys. Rev. Lett., 111 (2013) 173601.

    Article  ADS  Google Scholar 

  42. Kok P. et al., Phys. Rev. A, 63 (2001) 063407.

    Article  ADS  Google Scholar 

  43. Olivares S., Popovic M. and Paris M. G. A., Quantum Meas. Quantum Metrol., 3 (2016) 38.

    Google Scholar 

  44. Bachor H.-A. and Ralph T. C., A Guide to Experiments in Quantum Optics (Wiley-VCH, New York) 2004.

    Book  Google Scholar 

  45. D’Auria V., Fornaro S., Porzio A., Solimeno S., Olivares S. and Paris M. G. A., Phys. Rev. Lett., 102 (2009) 020502.

    Article  ADS  Google Scholar 

  46. Cialdi S., Porto C., Cipriani D., Olivares S. and Paris M. G. A., Phys. Rev. A, 93 (2016) 043805.

    Article  ADS  Google Scholar 

  47. Olivares S., Eur. Phys. J. ST, 203 (2012) 3.

    Article  Google Scholar 

  48. Yurke B., McCall S. L. and Klauder J. R., Phys. Rev. A, 33 (1986) 4033.

    Article  ADS  Google Scholar 

  49. Plick W. N., Dowling J. P. and Agarwal G. S., New J. Phys., 12 (2010) 083014.

    Article  ADS  Google Scholar 

  50. Demkowicz-Dobrzański R., Banaszek K. and Schnabel R., Phys. Rev. A, 88 (2013) 041802(R).

    Article  ADS  Google Scholar 

  51. Lloyd S., Science, 321 (2008) 1463.

    Article  ADS  Google Scholar 

  52. Tan S., Erkmen B., Giovannetti V., Guha S., Lloyd S., Maccone L., Pirandola S. and Shapiro J. H., Phys. Rev. Lett., 101 (2008) 253601.

    Article  ADS  Google Scholar 

  53. Shapiro J. H. and Lloyd S., New J. Phys., 11 (2009) 063045.

    Article  ADS  Google Scholar 

  54. Shapiro J. H., Phys. Rev. A, 80 (2009) 022320.

    Article  ADS  Google Scholar 

  55. Meda A., Losero E., Samantaray N., Scafirimuto F., Pradyumna S., Avella A., Ruo-Berchera I. and Genovese M., J. Opt., 19 (2017) 094002.

    Article  ADS  Google Scholar 

  56. Brida G., Genovese M. and Ruo Berchera I., Nat. Photon., 4 (2010) 227.

    Article  ADS  Google Scholar 

  57. Lopaeva E. D., Ruo Berchera I., Degiovanni I. P., Olivares S., Brida G. and Genovese M., Phys. Rev. Lett., 110 (2013) 153603.

    Article  ADS  Google Scholar 

  58. Lopaeva E. D., Ruo Berchera I., Olivares S., Brida G., Degiovanni I. P. and Genovese M., Phys. Scr., T160 (2014) 014026.

    Article  ADS  Google Scholar 

  59. Ragy S., Ruo Berchera I., Degiovanni I. P., Olivares S., Paris M. G. A., Adesso G. and Genovese M., J. Opt. Soc. Am. B, 31 (2014) 2045.

    Article  ADS  Google Scholar 

  60. Olivares S. and Paris M. G. A., Metrologia, 49 (2012) L14.

    Article  ADS  Google Scholar 

  61. Barzanjeh S., Guha S., Weedbrook C., Vitali D., Shapiro J. H. and Pirandola S., Phys. Rev. Lett., 114 (2015) 080503.

    Article  ADS  Google Scholar 

  62. Zhuang Q., Zhang Z. and Shapiro J. H., Phys. Rev. A, 96 (2017) 020302(R).

    Article  ADS  Google Scholar 

  63. Giovannetti V., Lloyd S. and Maccone L, Nat. Photon., 5 (2011) 22.

    Article  Google Scholar 

  64. Samantaray N., Ruo-Berchera I., Meda A. and Genovese M., Light: Sci. Appl., 6 (2017) e17005.

    Article  ADS  Google Scholar 

  65. Ruo Berchera I., Degiovanni I. P., Olivares S. and Genovese M., Phys. Rev. Lett. 110 (2013) 213601.

    Article  ADS  Google Scholar 

  66. Ruo Berchera I., Degiovanni I. P., Olivares S., Samantaray N., Traina P. and Genovese M., Phys. Rev. A, 92 (2015) 053821.

    Article  ADS  Google Scholar 

  67. Benatti F., Floreanini R., Olivares S. and Sindinci E., Int. J. Quantum Inf., 15 (2017) 1740014.

    Article  Google Scholar 

  68. Aschieri P. and Castellani L., J. High Energy Phys., 06 (2009) 086.

    Article  ADS  Google Scholar 

  69. Aschieri P. and Castellani L., J. Geom. Phys., 60 (2010) 375.

    Article  ADS  MathSciNet  Google Scholar 

  70. Pikovski I., Vanner M. R., Aspelmeyer M., Kim M. S. and Brukner Č., Nat. Phys., 8 (2012) 393.

    Article  Google Scholar 

  71. Hogan G., Phys. Rev. D, 85 (2012) 064007.

    Article  ADS  Google Scholar 

  72. Chou A. S. et al. (Holometer Collaboration), Phys. Rev. Lett., 117 (2016) 111102.

    Article  ADS  Google Scholar 

  73. Caves C. M., Phys. Rev. D, 23 (1981) 1693.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Olivares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivares, S. High-precision innovative sensing with continuous-variable optical states. Riv. Nuovo Cim. 41, 341–382 (2018). https://doi.org/10.1393/ncr/i2018-10148-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2018-10148-8

Navigation