Skip to main content
Log in

Attosecond spectroscopy of bio-chemically relevant molecules

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

Understanding the role of the electron dynamics in the photochemistry of bio-chemically relevant molecules is key to getting access to the fundamental physical processes leading to damage, mutation and, more generally, to the alteration of the final biological functions. Sudden ionization of a large molecule has been proven to activate a sub-femtosecond charge flow throughout the molecular backbone, purely guided by electronic coherences, which could ultimately affect the photochemical response of the molecule at later times. We can follow this ultrafast charge flow in real time by exploiting the extreme time resolution provided by attosecond light sources. In this work recent advances in attosecond molecular physics are presented with particular focus on the investigation of bio-relevant molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cederbaum L. and Zobeley J., Ultrafast charge migration by electron correlation, Chem. Phys. Lett., 307 (1999) 205. doi:https://doi.org/10.1016/S0009-2614(99)00508-4.

    Article  ADS  Google Scholar 

  2. Hennig H., Breidbach J. and Cederbaum L. S., Electron Correlation as the Driving Force for Charge Transfer: Charge Migration Following Ion ization in N-Methyl Acetamide, J. Phys. Chem. A, 109 (2005) 409. doi:https://doi.org/10.1021/jp046232s.

    Article  Google Scholar 

  3. Remacle F. and Levine R. D., An electronic time scale in chemistry, Proc. Natl. Acad. Sci. U.S.A., 103 (2006) 6793. doi:https://doi.org/10.1073/pnas.0601855103.

    Article  ADS  Google Scholar 

  4. Breidbach J. and Cederbaum L. S., Migration of holes: Numerical algorithms and implementation, J. Chem. Phys., 126 (2007) 1. doi:https://doi.org/10.1063/1.2428292.

    Article  Google Scholar 

  5. Kuleff A. I. and Cederbaum L. S., Ultrafast correlation-driven electron dynamics, J. Phys. B: At. Mol. Opt. Phys., 47 (2014) 124002. doi:https://doi.org/10.1088/0953-4075/47/12/124002.

    Article  ADS  Google Scholar 

  6. Lépine F., Ivanov M. Y. and Vrakking M. J. J., Attosecond molecular dynamcis: fact or fiction?, Nat. Photon., 8 (2014) 195. doi:https://doi.org/10.1038/nphoton.2014.25.

    Article  ADS  Google Scholar 

  7. Li Z., Vendrell O. and Santra R., Ultrafast charge transfer of a valence double hole in glycine driven exclusively by nuclear motion, Phys. Rev. Lett., 115 (2015) 143002. doi:https://doi.org/10.1103/PhysRevLett.115.143002.

    Article  ADS  Google Scholar 

  8. Krausz F. and Ivanov M., Attosecond Physics, Rev. Mod. Phys., 81 (2009) 163. doi:https://doi.org/10.1103/RevModPhys.81.163.

    Article  ADS  Google Scholar 

  9. Nisoli M., Decleva P., Calegari F., Palacios A. and Martn F., Attosecond electron dynamics in molecules, Chem. Rev., 117 (2017) 10760. doi:https://doi.org/10.1021/acs.chemrev.6b00453.

    Article  Google Scholar 

  10. Sansone G., Poletto L. and Nisoli M., High-Energy Attosecond Light Sources, Nat. Photon., 5 (2011) 655. doi:https://doi.org/10.1038/nphoton.2011.167.

    Article  ADS  Google Scholar 

  11. Calegari F., Sansone G., Stagira S., Vozzi C. and Nisoli M., Advances in attosecond science, J. Phys. B: At. Mol. Opt. Phys., 49 (2016) 062001.

    Article  ADS  Google Scholar 

  12. Hentschel M., Kienberger R., Spielmann C., Reider G. A., Milosevic N., Brabec T., Corkum P., Heinzmann U., Drescher M. and Krausz F., Attosecond metrology, Nature, 414 (2001) 509. doi:https://doi.org/10.1038/35107000.

    ADS  Google Scholar 

  13. Goulielmakis E., Schultze M., Hofstetter M., Yakovlev V. S., Gagnon J., Uiberacker M., Aquila A. L., Gullikson E. M., Attwood D. T. and Kienberger R. et al., Single-cycle nonlinear optics, Science, 320 (2008) 1614. arXiv:http://science.sciencemag.org/content/320/5883/1614.full.pdf, doi:https://doi.org/10.1126/science.1157846.

    Article  ADS  Google Scholar 

  14. Corkum P. B., Burnett N. H. and Ivanov M. Y., Subfemtosecond pulses, Opt. Lett. 19 (1994) 1870. doi:https://doi.org/10.1364/OL.19.001870.

    Article  ADS  Google Scholar 

  15. Sola I., Mével E., Elouga L., Constant E., Strelkov V., Poletto L., Villoresi P., Benedetti E., Caumes J. P. and Stagira S. et al., Controlling attosecond electron dynamics by phase-stabilized polarization gating, Nat. Phys., 2 (2006) 319.

    Article  Google Scholar 

  16. Sansone G., Benedetti E., Calegari F., Vozzi C., Avaldi L., Flammini R., Poletto L., Villoresi P., Altucci C. and Velotta R. et al., Isolated single-cycle attosecond pulses, Science, 314 (2006) 443. arXiv:http://science.sciencemag.org/content/314/5798/443.full.pdf, doi:https://doi.org/10.1126/science.1132838.

    Article  ADS  Google Scholar 

  17. Chang Z., Controlling attosecond pulse generation with a double optical gating, Phys. Rev. A, 76 (2007) 051403. doi:https://doi.org/10.1103/PhysRevA.76.051403.

    Article  ADS  Google Scholar 

  18. Mashiko H., Gilbertson S., Li C., Khan S. D., Shakya M. M., Moon E. and Chang Z., Double Optical Gating of High-Order Harmonic Generation with Carrier-Envelope Phase Stabilized Lasers, Phys. Rev. Lett., 100 (2008) 103906. doi:https://doi.org/10.1103/PhysRevLett.100.103906.

    Article  ADS  Google Scholar 

  19. Feng X., Gilbertson S., Mashiko H., Wang H., Khan S. D., Chini M., Wu Y., Zhao K. and Chang Z., Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers, Phys. Rev. Lett., 103 (2009) 183901. doi:https://doi.org/10.1103/PhysRevLett.103.183901.

    Article  ADS  Google Scholar 

  20. Ferrari F., Calegari F., Lucchini M., Vozzi C., Stagira S., Sansone G. and Nisoli M., High-Energy Isolated Attosecond Pulses Generated by Above-Saturation Few-Cycle Fields, Nat. Photon., 4 (2010) 875.

    Article  ADS  Google Scholar 

  21. Wirth A., Hassan M. T., Grguraš I., Gagnon J., Moulet A., Luu T. T., Pabst S., Santra R., Alahmed Z. A. and Azzeer A. M. et al., Synthesized light transients, Science, 334 (2011) 195. arXiv:http://science.sciencemag.org/content/334/6053/195.full.pdf, doi:https://doi.org/10.1126/science.1210268.

    Article  ADS  Google Scholar 

  22. Hassan M. T., Wirth A., Grguraš I., Moulet A., Luu T. T., Gagnon J., Pervak V. and Goulielmakis E., Attosecond photonics: Synthesis and control of light transients, Rev. Sci. Instrum., 83 (2012) 111301. doi:https://doi.org/10.1063/1.4758310.

    Article  ADS  Google Scholar 

  23. Hassan M. T., Luu T. T., Moulet A., Raskazovskaya O., Zhokhov P., Garg M., Karpowicz N., Zheltikov A. M., Pervak V. and Krausz F. et al., Optical attosecond pulses and tracking the nonlinear response of bound electrons, Nature, 530 (2016) 66. doi:https://doi.org/10.1038/nature16528.

    Article  ADS  Google Scholar 

  24. Manzoni C., Mücke O. D., Cirmi G., Fang S., Moses J., Huang S.-W., Hong K.-H., Cerullo G. and Kërtner F. X., Coherent pulse synthesis: towards sub-cycle optical waveforms, Laser Photon. Rev., 9 (2015) 129. doi:https://doi.org/10.1002/lpor.201400181.

    Article  ADS  Google Scholar 

  25. Goulielmakis E., Uiberacker M., Kienberger R., Baltuska A., Yakovlev V., Scrinzi A., Westerwalbesloh T., Kleineberg U., Heinzmann U. and Drescher M. et al., Direct measurement of light waves, Science, 305 (2004) 1267. arXiv:http://science.sciencemag.org/content/305/5688/1267.full.pdf, doi:https://doi.org/10.1126/science.1100866.

    Article  ADS  Google Scholar 

  26. Tseng T.-C., Urban C., Wang Y., Otero R., Tait S. L., Alcamí M., Ecija D., Trelka M., Gallego J. M., Lin N., Konuma M., Starke U., Nefedov A., Langner A., Wöll C., Herranz M. A., Martin F., Martín N., Kern K. and Miranda R., Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces, Nat. Chem., 2 (2010) 374. doi:https://doi.org/10.1038/nchem.591.

    Article  Google Scholar 

  27. Griffini G., Brambilla L., Levi M., Zoppo M. D. and Turri S., Photo-degradation of a perylene-based organic luminescent solar concentrator: Molecular aspects and device implications, Solar Energy Mater. Solar Cells, 111 (2013) 41. doi:https://doi.org/10.1016/j.solmat.2012.12.021.

    Article  Google Scholar 

  28. Boll R., Anielski D., Bostedt C., Bozek J. D., Christensen L., Coffee R., De S., Decleva P., Epp S. W., Erk B., Foucar L., Krasniqi F., Küpper J., Rouzée A., Rudek B., Rudenko A., Schorb S., Stapelfeldt H., Stener M., Stern S., Techert S., Trippel S., Vrakking M. J. J., Ullrich J. and Rolles D., Femtosecond photoelectron diffraction on laser-aligned molecules: Towards time-resolved imaging of molecular structure, Phys. Rev. A, 88 (2013) 061402. doi:https://doi.org/10.1103/PhysRevA.88.061402.

    Article  ADS  Google Scholar 

  29. Shan B. and Chang Z., Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field, Phys. Rev. A, 65 (2001) 011804. doi:https://doi.org/10.1103/PhysRevA.65.011804.

    Article  ADS  Google Scholar 

  30. Popmintchev T., Chen M.-C., Cohen O., Grisham M. E., Rocca J. J., Murnane M. M. and Kapteyn H. C., Extended phase matching of high harmonics driven by mid-infrared light, Opt. Lett., 33 (2008) 2128. doi:https://doi.org/10.1364/OL.33.002128.

    Article  ADS  Google Scholar 

  31. Colosimo P., Doumy G., Blaga C. I., Wheeler J., Hauri C., Catoire F., Tate J., Chirla R., March A. M. and Paulus G. G. et al., Scaling Strong-Field Interactions Towards the Classical Limit, Nat. Phys., 4 (2008) 386. arXiv:9702041, doi:https://doi.org/10.1038/nphys914.

    Article  Google Scholar 

  32. Takahashi E. J., Kanai T., Ishikawa K. L., Nabekawa Y. and Midorikawa K., Coherent water window X-ray by phase-matched high-order harmonic generation in neutral media, Phys. Rev. Lett., 101 (2008) 253901. doi:https://doi.org/10.1103/PhysRevLett.101.253901.

    Article  ADS  Google Scholar 

  33. Vozzi C., Calegari F., Frassetto F., Poletto L., Sansone G., Villoresi P., Nisoli M., De Silvestri S. and Stagira S., Coherent Continuum Generation Above 100 ev Driven by an Ir Parametric Source in a Two-Color Scheme, Phys. Rev. A, 79 (2009) 033842. doi:https://doi.org/10.1103/PhysRevA.79.033842.

    Article  ADS  Google Scholar 

  34. Shiner A. D., Trallero-Herrero C., Kajumba N., Bandulet H.-C., Comtois D., Légaré F., Giguère M., Kieffer J.-C., Corkum P. B. and Villeneuve D. M., Wavelength scaling of high harmonic generation efficiency, Phys. Rev. Lett., 103 (2009) 073902. doi:https://doi.org/10.1103/PhysRevLett.103.073902.

    Article  ADS  Google Scholar 

  35. Popmintchev T., Chen M.-C., Popmintchev D., Arpin P., Brown S., Alisauskas S., Andriukaitis G., Balciunas T., Mucke O. D. and Pugzlys A. et al., Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers, Science, 336 (2012) 1287. doi:https://doi.org/10.1126/science.1218497.

    Article  ADS  MathSciNet  Google Scholar 

  36. Cousin S. L., Di Palo N., Buades B., Teichmann S. M., Reduzzi M., Devetta M., Kheifets A., Sansone G. and Biegert J., Attosecond streaking in the water window: A new regime of attosecond pulse characterization, Phys. Rev. X, 7 (2017) 041030. doi:https://doi.org/10.1103/PhysRevX.7.041030.

    Google Scholar 

  37. Tzallas P., Skantzakis E., Nikolopoulos L. A. A., Tsakiris G. D. and Charalambidis D., Extreme-Ultraviolet Pump-Probe Studies of One-Femtosecond-Scale Electron Dynamics, Nat. Phys., 7 (2011) 781.

    Article  Google Scholar 

  38. Carpeggiani P. A., Tzallas P., Palacios A., Gray D., Martín F. and Charalambidis D., Disclosing intrinsic molecular dynamics on the 1 fs scale through extreme-ultraviolet pump-probe measurements, Phys. Rev. A, 89 (2014) 023420. doi:https://doi.org/10.1103/PhysRevA.89.023420.

    Article  ADS  Google Scholar 

  39. Takahashi E. J., Lan P., Mücke O. D., Nabekawa Y. and Midorikawa K., Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses, Nat. Commun., 4 (2013) 2691.

    Article  ADS  Google Scholar 

  40. Calegari F., Vozzi C., Negro M., Sansone G., Frassetto F., Poletto L., Villoresi P., Nisoli M., Silvestri S. D. and Stagira S., Efficient continuum generation exceeding 200 ev by intense ultrashort two-color driver, Opt. Lett., 34 (2009) 3125. doi:https://doi.org/10.1364/OL.34.003125.

    Article  ADS  Google Scholar 

  41. Takahashi E. J., Lan P., Mucke O. D., Nabekawa Y. and Midorikawa K., Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse, Phys. Rev. Lett., 104 (2010) 233901. doi:https://doi.org/10.1103/PhysRevLett.104.233901.

    Article  ADS  Google Scholar 

  42. Lan P., Takahashi E. J. and Midorikawa K., Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation, Phys. Rev. A, 82 (2010) 053413. doi:https://doi.org/10.1103/PhysRevA.82.053413.

    Article  ADS  Google Scholar 

  43. Hemsing E., Stupakov G., Xiang D. and Zholents A., Beam by design: Laser manipulation of electrons in modern accelerators, Rev. Mod. Phys., 86 (2014) 897. doi:https://doi.org/10.1103/RevModPhys.86.897.

    Article  ADS  Google Scholar 

  44. Martin I. P. S. and Bartolini R., Comparison of short pulse generation schemes for a soft X-ray free electron laser, Phys. Rev. ST Accel. Beams, 14 (2011) 030702. doi:https://doi.org/10.1103/PhysRevSTAB.14.030702.

    Article  ADS  Google Scholar 

  45. Bonifacio R., De Salvo L., Pierini P., Piovella N. and Pellegrini C., Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise, Phys. Rev. Lett., 73 (1994) 70. doi:https://doi.org/10.1103/PhysRevLett.73.70.

    Article  ADS  Google Scholar 

  46. Helml W., Maier A., Schweinberger W., Grguraš I., Radcliffe P., Doumy G., Roedig C., Gagnon J., Messerschmidt M. and Schorb S. et al., Measuring the Temporal Structure of Few-Femtosecond Free-Electron Laser X-Ray Pulses Directly in the Time Domain, Nat. Photon., 8 (2014) 950.

    Article  ADS  Google Scholar 

  47. Sansone G., Kelkensberg F., Pérez-Torres J. F., Morales F., Kling M. F., Siu W., Ghafur O., Johnsson P., Swoboda M., Benedetti E., Ferrari F., Lepine F., Sanz-Vicario J. L., Zherebtsov S., Znakovskaya I., L’Huillier A., Ivanov M. Y., Nisoli M., Martín F. and Vrakking M. J. J., Electron localization following attosecond molecular photoionization, Nature, 465 (2010) 763. doi:https://doi.org/10.1038/nature09084.

    Article  ADS  Google Scholar 

  48. Trabattoni A., Klinker M., González-Vázquez J., Liu C., Sansone G., Linguerri R., Hochlaf M., Klei J., Vrakking M. J. J., Martín F., Nisoli M. and Calegari F., Mapping the dissociative ionization dynamics of molecular nitrogen with attosecond time resolution, Phys. Rev. X, 5 (2015) 041053. doi:https://doi.org/10.1103/PhysRevX.5.041053.

    Google Scholar 

  49. Warrick E. R., Baekhoj J. E., Cao W., Fidler A. P., Jensen F., Madsen L. B., Leone S. R. and Neumark D. M., Attosecond transient absorption spectroscopy of molecular nitrogen: Vibrational coherences in the b′1 1s+u state, Chem. Phys. Lett., 683 (2017) 408

    Article  ADS  Google Scholar 

  50. Ahmed Zewail (1946-2016) Commemoration Issue of Chem. Phys. Lett., doi:https://doi.org/10.1016/j.cplett.2017.02.013.

  51. Beaulieu S., Comby A., Clergerie A., Caillat J., Descamps D., Dudovich N., Fabre B., Géneaux R., Légaré F., Petit S., Pons B., Porat G., Ruchon T., Taïeb R., Blanchet V. and Mairesse Y., Attosecond-resolved photoionization of chiral molecules, Science, 358 (2017) 1288. arXiv:http://science.sciencemag.org/content/358/6368/1288.full.pdf, doi:https://doi.org/10.1126/science.aao5624.

    Article  ADS  Google Scholar 

  52. Kelkensberg F., Siu W., Pérez-Torres J. F., Morales F., Gademann G., Rouzée A., Johnsson P., Lucchini M., Calegari F., Sanz-Vicario J. L., Martín F. and Vrakking M. J. J., Attosecond control in photoionization of hydrogen molecules, Phys. Rev. Lett., 107 (2011) 043002. doi:https://doi.org/10.1103/PhysRevLett.107.043002.

    Article  ADS  Google Scholar 

  53. Siu W., Kelkensberg F., Gademann G., Rouzée A., Johnsson P., Dowek D., Lucchini M., Calegari F., De Giovannini U., Rubio A., Lucchese R. R., Kono H., Lépine F. and Vrakking M. J. J., Attosecond control of dissociative ionization of o2 molecules, Phys. Rev. A, 84 (2011) 063412. doi:https://doi.org/10.1103/PhysRevA.84.063412.

    Article  ADS  Google Scholar 

  54. Cörlin P., Fischer A., Schönwald M., Sperl A., Mizuno T., Thumm U., Pfeifer T. and Moshammer R., Probing calculated O2+ potential-energy curves with an xuv-ir pump-probe experiment, Phys. Rev. A, 91 (2015) 043415. doi:https://doi.org/10.1103/PhysRevA.91.043415.

    Article  ADS  Google Scholar 

  55. Sandhu A. S., Gagnon E., Santra R., Sharma V., Li W., Ho P., Ranitovic P., Cocke C. L., Murnane M. M. and Kapteyn H. C., Observing the creation of electronic feshbach resonances in soft X-ray-induced o2 dissociation, Science, 322 (2008) 1081. arXiv:http://science.sciencemag.org/content/322/5904/1081.full.pdf, doi:https://doi.org/10.1126/science.1164498.

    Article  ADS  Google Scholar 

  56. Znakovskaya I., von den Hoff P., Zherebtsov S., Wirth A., Herrwerth O., Vrakking M. J. J., de Vivie-Riedle R. and Kling M. F., Attosecond control of electron dynamics in carbon monoxide, Phys. Rev. Lett., 103 (2009) 103002. doi:https://doi.org/10.1103/PhysRevLett.103.103002.

    Article  ADS  Google Scholar 

  57. Poletto L., Villoresi P., Frassetto F., Calegari F., Ferrari F., Lucchini M., Sansone G. and Nisoli M., Time-delay compensated monochromator for the spectral selection of extreme-ultraviolet high-order laser harmonics, Rev. Sci. Instrum., 80 (2009) 123109. doi:https://doi.org/10.1063/1.3273964.

    Article  ADS  Google Scholar 

  58. Eckstein M., Yang C.-H., Kubin M., Frassetto F., Poletto L., Ritze H.-H., Vrakking M. J. J. and Kornilov O., Dynamics of n2 dissociation upon inner-valence ionization by wavelength-selected xuv pulses, J. Phys. Chem. Lett., 6 (2015) 419. doi:https://doi.org/10.1021/jz5025542.

    Article  Google Scholar 

  59. Wang H., Chini M., Chen S., Zhang C.-H., He F., Cheng Y., Wu Y., Thumm U. and Chang Z., Attosecond time-resolved autoionization of argon, Phys. Rev. Lett., 105 (2010) 143002. doi:https://doi.org/10.1103/PhysRevLett.105.143002.

    Article  ADS  Google Scholar 

  60. Cao W., Warrickand E. R., Neumark D. M. and Leone S. R., Excited-state vibronic wave-packet dynamics in h2 probed by xuv transient four-wave mixing, New J. Phys., 18 (2016) 13041.

    Article  Google Scholar 

  61. Wang X., Chini M., Cheng Y., Wu Y., Tong X.-M. and Chang Z., Subcycle laser control and quantum interferences in attosecond photoabsorption of neon, Phys. Rev. A, 87 (2013) 063413. doi:https://doi.org/10.1103/PhysRevA.87.063413.

    Article  ADS  Google Scholar 

  62. Beck A. R., Bernhardt B., Warrick E. R., Wu M., Chen S., Gaarde M. B., Schafer K. J., Neumark D. M. and Leone S. R., Attosecond transient absorption probing of electronic superpositions of bound states in neon: detection of quantum beats, New J. Phys., 16 (2014) 113016.

    Article  ADS  Google Scholar 

  63. Chini M., Wang X., Cheng Y., Wu Y., Zhao D., Telnov D., Chu S.-I. and Chang Z., Sub-cycle oscillations in virtual states brought to light, Sci. Rep., 3 (2013) 1105.

    Article  ADS  Google Scholar 

  64. Chen S., Bell M. J., Beck A. R., Mashiko H., Wu M., Pfeiffer A. N., Gaarde M. B., Neumark D. M., Leone S. R. and Schafer K. J., Light-induced states in attosecond transient absorption spectra of laser-dressed helium, Phys. Rev. A, 86 (2012) 063408. doi:https://doi.org/10.1103/PhysRevA.86.063408.

    Article  ADS  Google Scholar 

  65. Ott C., Kaldun A., Argenti L., Raith P., Meyer K., Laux M., Zhang Y., Blättermann A., Hagstotz S. and Ding T. et al., Reconstruction and control of a time-dependent two-electron wave packet, Nature, 516 (2014) 374.

    Article  ADS  Google Scholar 

  66. Reduzzi M., Chu W.-C., Feng C., Dubrouil A., Hummert J., Calegari F., Frassetto F., Poletto L., Kornilov O., Nisoli M., Lin C.-D. and Sansone G., Observation of autoionization dynamics and sub-cycle quantum beating in electronic molecular wave packets, J. Phys. B: At. Mol. Opt. Phys., 49 (2016) 065102.

    Article  ADS  Google Scholar 

  67. Huppert M., Jordan I., Baykusheva D., von Conta A. and Wörner H. J., Attosecond delays in molecular photoionization, Phys. Rev. Lett., 117 (2016) 093001.

    Article  ADS  Google Scholar 

  68. Spinlove K., Vacher M., Bearpark M., Robb M. and Worth G., Using quantum dynamics simulations to follow the competition between charge migration and charge transfer in polyatomic molecules, Chem. Phys., 482 (2017) 52, electrons and nuclei in motion — correlation and dynamics in molecules (on the occasion of the 70th birthday of Lorenz S. Cederbaum). doi:https://doi.org/10.1016/j.chemphys.2016.10.007.

    Article  Google Scholar 

  69. Woerner H. J., Arrell C. A., Banerji N., Cannizzo A., Chergui M., Das A. K., Hamm P., Keller U., Kraus P. M., Liberatore E., Lopez-Tarifa P., Lucchini M., Meuwly M., Milne C., Moser J.-E., Rothlisberger U., Smolentsev G., Teuscher J., van Bokhoven J. A. and Wenger O., Charge migration and charge transfer in molecular systems, Struct. Dyn., 4 (2017) 061508. arXiv:https://doi.org/10.1063/1.4996505, doi:https://doi.org/10.1063/1.4996505.

    Article  Google Scholar 

  70. Vacher M., Steinberg L., Jenkins A. J., Bearpark M. J. and Robb M. A., Electron dynamics following photoionization: Decoherence due to the nuclear-wave-packet width, Phys. Rev. A, 92 (2015) 040502. doi:https://doi.org/10.1103/PhysRevA.92.040502.

    Article  ADS  Google Scholar 

  71. Lara-Astiaso M., Ayuso D., Tavernelli I., Decleva P., Palacios A. and Martin F., Decoherence, control and attosecond probing of XUV-induced charge migration in biomolecules. A theoretical outlook, Faraday Discuss., 194 (2016) 41. doi:https://doi.org/10.1039/C6FD00074F.

    Article  ADS  Google Scholar 

  72. Calegari F., Ayuso D., Trabattoni A., Belshaw L., De Camillis S., Anumula S., Frassetto F., Poletto L., Palacios A., Decleva P., Greenwood J. B., Martín F. and Nisoli M., Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses, Science, 346 (2014) 336. arXiv:http://science.sciencemag.org/content/346/6207/336.full.pdf, doi:https://doi.org/10.1126/science.1254061.

    Article  ADS  Google Scholar 

  73. Kuleff A. I., Kryzhevoi N. V., Pernpointner M. and Cederbaum L. S., Core ionization initiates subfemtosecond charge migration in the valence shell of molecules, Phys. Rev. Lett., 117 (2016) 093002. doi:https://doi.org/10.1103/PhysRevLett.117.093002.

    Article  ADS  Google Scholar 

  74. Hollstein M., Santra R. and Pfannkuche D., Correlation-driven charge migration following double ionization and attosecond transient absorption spectroscopy, Phys. Rev. A, 95 (2017) 053411. doi:https://doi.org/10.1103/PhysRevA.95.053411.

    Article  ADS  Google Scholar 

  75. Young L., Ueda K., Guehr M., Bucksbaum P. H., Simon M., Mukamel S., Rohringer N., Prince K. C., Masciovecchio C., Meyer M., Rudenko A., Rolles D., Bostedt C., Fuchs M., Reis D. A., Santra R., Kapteyn H., Murnane M., Ibrahim H., Legare F., Vrakking M., Isinger M., Kroon D., Gisselbrecht M., L’Huillier A., Woerner H. J. and Leone S. R., Roadmap of ultrafast X-ray atomic and molecular physics, J. Phys. B: At. Mol. Opt. Phys., 51 (2018) 032003.

    Article  ADS  Google Scholar 

  76. Belshaw L., Calegari F., Duffy M. J., Trabattoni A., Poletto L., Nisoli M. and Greenwood J. B., Observation of ultrafast charge migration in an amino acid, J. Phys. Chem. Lett., 3 (2012) 3751. doi:https://doi.org/10.1021/jz3016028.

    Article  Google Scholar 

  77. Cailliez F., Mueller P., Firmino T., Pernot P. and de la Lande A., Energetics of photoinduced charge migration within the tryptophan tetrad of an animal (6-4) photolyase, J. Am. Chem. Soc., 138 (2016) 1904. doi:https://doi.org/10.1021/jacs.5b10938.

    Article  Google Scholar 

  78. Rottger K., Marroux H. J. B., Grubb M. P., Coulter P. M., Bohnke H., Henderson A. S., Galan M. C., Temps F., Orr-Ewing A. J. and Roberts G. M., Ultraviolet absorption induces hydrogen-atom transfer in g c Watson-Crick dna base pairs in solution, Angew. Chem., 127 (2015) 14932. doi:https://doi.org/10.1002/ange.201506940.

    Article  Google Scholar 

  79. Raytchev M., Mayer E., Amann N., Wagenknecht H.-A. and Fiebig T., Ultrafast proton-coupled electron-transfer dynamics in pyrene-modified pyrimidine nucleosides: Model studies towards an understanding of reductive electron transport in DNA, Chem. Phys. Chem., 5 (2004) 706. doi:https://doi.org/10.1002/cphc.200301205.

    Article  Google Scholar 

  80. Lara-Astiaso M., Palacios A., Decleva P., Tavernelli I. and Martn F., Role of electron-nuclear coupled dynamics on charge migration induced by attosecond pulses in glycine, Chem. Phys. Lett., 683 (2017) 357

    Article  ADS  Google Scholar 

  81. Ahmed Zewail (1946-2016) Commemoration Issue of Chem. Phys. Lett. doi:https://doi.org/10.1016/j.cplett.2017.05.008.

  82. Zewail A. H., Femtochemistry: Atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel lecture), Angew. Chem. Int. Ed., 39 (2000) 2586. doi:https://doi.org/10.1002/1521-3773(20000804)39:15<2586::AID-ANIE2586>3.0.CO;2-O.

    Article  Google Scholar 

  83. Hertel I. V. and Radloff W., Ultrafast dynamics in isolated molecules and molecular clusters, Rep. Prog. Phys., 69 (2006) 1897.

    Article  ADS  Google Scholar 

  84. Schlau-Cohen G. S., Dawlaty J. M. and Fleming G. R., Ultrafast multidimensional spectroscopy: Principles and applications to photosynthetic systems, IEEE J. Select. Topics Quantum Electron., 18 (2012) 283. doi:https://doi.org/10.1109/JSTQE.2011.2112640.

    Article  ADS  Google Scholar 

  85. Romero E., Augulis R., Novoderezhkin V. I., Ferretti M., Thieme J., Zigmantas D. and van Grondelle R., Quantum coherence in photosynthesis for efficient solar-energy conversion, Nat. Phys., 10 (2014) 676. doi:https://doi.org/10.1038/nphys3017.

    Article  Google Scholar 

  86. Nenov A., Segarra-Marti J., Giussani A., Conti I., Rivalta I., Dumont E., Jaiswal V. K., Altavilla S. F., Mukamel S. and Garavelli M., Probing deactivation pathways of dna nucleobases by two-dimensional electronic spectroscopy: first principles simulations, Faraday Discuss., 177 (2015) 345. doi:https://doi.org/10.1039/C4FD00175C.

    Article  ADS  Google Scholar 

  87. Beck A. R., Neumark D. M. and Leone S. R., Probing ultrafast dynamics with attosecond transient absorption, Chem. Phys. Lett., 624 (2015) 119. doi:https://doi.org/10.1016/j.cplett.2014.12.048.

    Article  ADS  Google Scholar 

  88. Crespo-Hernandez C. E., Cohen B. and Kohler B., Base stacking controls excited-state dynamics in dna, Nature, 436 (2005) 1141. doi:https://doi.org/10.1038/nature03933.

    Article  ADS  Google Scholar 

  89. Middleton C. T., de La Harpe K., Su C., Law Y. K., Crespo-Hernndez C. E. and Kohler B., Dna excited-state dynamics: From single bases to the double helix, Annu. Rev. Phys. Chem., 60 (2009) 217. doi:https://doi.org/10.1146/annurev.physchem.59.032607.093719.

    Article  ADS  Google Scholar 

  90. Beratan D. N. and Waldeck D. H., Hot holes break the speed limit, Nat. Chem., 8 (2016) 992. doi:https://doi.org/10.1038/nchem.2655.

    Article  Google Scholar 

  91. Renaud N., Harris M. A., Singh A. P. N., Berlin Y. A., Ratner M. A., Wasielewski M. R., Lewis F. D. and Grozema F. C., Deep-hole transfer leads to ultrafast charge migration in DNA hairpins, Nat. Chem., 8 (2016) 1015. doi:https://doi.org/10.1038/nchem.2590.

    Article  Google Scholar 

  92. Barbatti M., Borin A. C. and Ullrich S., Photoinduced Processes in Nucleic Acids I, Ch. Photoinduced Processes in Nucleic Acids (Springer International Publishing, Cham) 2015, pp. 1–l32. doi:https://doi.org/10.1007/1282014569.

    Google Scholar 

  93. Gustavsson T., Improta R. and Markovitsi D., Dna/rna: Building blocks of life under UV irradiation, J. Phys. Chem. Lett., 1 (2010) 2025. doi:https://doi.org/10.1021/jz1004973.

    Article  Google Scholar 

  94. De Camillis S., Miles J., Alexander G., Ghafur O., Williams I. D., Townsend D. and Greenwood J. B., Ultrafast non-radiative decay of gas-phase nucleosides, Phys. Chem. Chem. Phys., 17 (2015) 23643. doi:https://doi.org/10.1039/C5CP03806E.

    Article  Google Scholar 

  95. Pecourt J.-M. L., Peon J. and Kohler B., Ultrafast internal conversion of electronically excited rna and dna nucleosides in water, J. Am. Chem. Soc., 122 (2000) 9348. doi:https://doi.org/10.1021/ja0021520.

    Article  Google Scholar 

  96. Wan C., Fiebig T., Schiemann O., Barton J. K. and Zewail A. H., Femtosecond direct observation of charge transfer between bases in DNA, Proc. Natl. Acad. Sci. U.S.A., 97 (2000) 14052. arXiv:http://www.pnas.org/content/97/26/14052.full.pdf, doi:https://doi.org/10.1073/pnas.250483297.

    Article  ADS  Google Scholar 

  97. Marchetti B., Karsili T. N. V., Ashfold M. N. R. and Domcke W., A “bottom up”, ab initio computational approach to understanding fundamental photophysical processes in nitrogen containing heterocycles, DNA bases and base pairs, Phys. Chem. Chem. Phys., 18 (2016) 20007. doi:https://doi.org/10.1039/C6CP00165C.

    Article  Google Scholar 

  98. Crespo-Hernandez C. E., Martinez-Fernandez L., Rauer C., Reichardt C., Mai S., Pollum M., Marquetand P., Gonzlez L. and Corral I., Electronic and structural elements that regulate the excited-state dynamics in purine nucleobase derivatives, J. Am. Chem. Soc., 137 (2015) 4368. doi:https://doi.org/10.1021/ja512536c.

    Article  Google Scholar 

  99. Stavros V. G. and Verlet J. R., Gas-phase femtosecond particle spectroscopy: A bottom-up approach to nucleotide dynamics, Annu. Rev. Phys. Chem., 67 (2016) 211. doi:https://doi.org/10.1146/annurev-physchem-040215-112428.

    Article  ADS  Google Scholar 

  100. Conti I., Nenov A., Hfinger S., Altavilla S. F., Rivalta I., Dumont E., Orlandi G. and Garavelli M., Excited state evolution of DNA stacked adenines resolved at the CASPT2//CASSCF/amber level: from the bright to the excimer state and back, Phys. Chem. Chem. Phys., 17 (2015) 7291. doi:https://doi.org/10.1039/c4cp05546b.

    Article  Google Scholar 

  101. Mansson E. P., De Camillis S., Castrovilli M. C., Galli M., Nisoli M., Calegari F. and Greenwood J. B., Ultrafast dynamics in the dna building blocks thymidine and thymine initiated by ionizing radiation, Phys. Chem. Chem. Phys., 19 (2017) 19815. doi:https://doi.org/10.1039/C7CP02803B.

    Article  Google Scholar 

  102. Hernández-García C., Popmintchev T., Murnane M. M., Kapteyn H. C., Plaja L., Becker A. and Jaron-Becker A., Isolated broadband attosecond pulse generation with near- and mid-infrared driver pulses via time-gated phase matching, Opt. Express, 25 (2017) 11855. doi:https://doi.org/10.1364/OE.25.011855.

    Article  ADS  Google Scholar 

  103. Helml W., Maier A., Schweinberger W., Grguraš I., Radcliffe P., Doumy G., Roedig C., Gagnon J., Messerschmidt M., Schorb S. et al., Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain, Nat. Photon, 8 (2014) 950.

    Article  ADS  Google Scholar 

  104. Feng L., Liu H., Li Y. and Li W., Generation of high-intensity kev single-attosecond pulse using multi-cycle spatial inhomogeneous mid-infrared field, J. Opt. Soc. Am. B, 35 (2018) A84. doi:https://doi.org/10.1364/JOSAB.35.000A84.

    Article  ADS  Google Scholar 

  105. Ren X., Li J., Yin Y., Zhao K., Chew A., Wang Y., Hu S., Cheng Y., Cunningham E., Wu Y., Chini M. and Chang Z., Attosecond light sources in the water window, J. Optics, 20 (2018) 023001.

    Article  ADS  Google Scholar 

  106. Loh Z.-H. and Leone S. R., Capturing ultrafast quantum dynamics with femtosecond and attosecond X-ray core-level absorption spectroscopy, J. Phys. Chem. Lett., 4 (2013) 292. doi:https://doi.org/10.1021/jz301910n.

    Article  Google Scholar 

  107. Elkins M. H., Williams H. L. and Neumark D. M., Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy, J. Chem. Phys., 144 (2016) 184503. doi:https://doi.org/10.1063/1.4948546.

    Article  ADS  Google Scholar 

  108. Arrell C. A., Ojeda J., Sabbar M., Okell W. A., Witting T., Siegel T., Diveki Z., Hutchinson S., Gallmann L., Keller U., van Mourik F., Chapman R. T., Cacho C., Rodrigues N., Turcu I. C., Tisch J. W., Springate E., Marangos J. P. and Chergui M., A simple electron time-of-flight spectrometer for ultrafast vacuum ultraviolet photoelectron spectroscopy of liquid solutions, Rev. Sci. Instrum., 85 (2014) 103117. doi:https://doi.org/10.1063/1.4899062.

    Article  ADS  Google Scholar 

  109. Jordan I., Jain A., Gaumnitz T., Ma J. and Wrner H. J., Photoelectron spectrometer for liquid and gas-phase attosecond spectroscopy with field-free and magnetic bottle operation modes, Rev. Sci. Instrum., 89 (2018) 053103. doi:https://doi.org/10.1063/1.5011657.

    Article  ADS  Google Scholar 

  110. Conti Nibali V. and Havenith M., New insights into the role of water in biological function: Studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations, J. Am. Chem. Soc., 136 (2014) 12800. doi:https://doi.org/10.1021/ja504441h.

    Article  Google Scholar 

  111. Dopfer O. and Fujii M., Probing solvation dynamics around aromatic and biological molecules at the single-molecular level, Chem. Rev., 116 (2016) 5432. doi:https://doi.org/10.1021/acs.chemrev.5b00610.

    Article  Google Scholar 

  112. Garavelli M., Celani P., Bernardi F., Robb M. A. and Olivucci M., The c5h6nh2+ protonated shiff base: An ab initio minimal model for retinal photoisomerization, J. Am. Chem. Soc., 119 (1997) 6891. arXiv:https://doi.org/10.1021/ja9610895, doi:https://doi.org/10.1021/ja9610895.

    Article  Google Scholar 

  113. Gai F., Hasson K. C., McDonald J. C. and Anfinrud P. A., Chemical dynamics in proteins: The photoisomerization of retinal in bacteriorhodopsin, Science, 279 (1998) 1886. arXiv:http://science.sciencemag.org/content/279/5358/1886.full.pdf, doi:https://doi.org/10.1126/science.279.5358.1886.

    Article  ADS  Google Scholar 

  114. Greenwood J. B., Miles J., Camillis S. D., Mulholland P., Zhang L., Parkes M. A., Hailes H. C. and Fielding H. H., Resonantly enhanced multiphoton ionization spectrum of the neutral green fluorescent protein chromophore, J. Phys. Chem. Lett., 5 (2014) 3588. doi:https://doi.org/10.1021/jz5019256.

    Article  Google Scholar 

  115. Tanaka K., The origin of macromolecule ionization by laser irradiation (Nobel lecture), Angew. Chem. Int. Ed., 42 (2003) 3860. doi:https://doi.org/10.1002/anie.200300585.

    Article  Google Scholar 

  116. Fenn J. B., Electrospray wings for molecular elephants (Nobel lecture), Angew. Chem. Int. Ed., 42 (2003) 3871. doi:https://doi.org/10.1002/anie.200300605.

    Article  Google Scholar 

  117. Reitsma G., Gonzalez-Magana O., Versolato O., Door M., Hoekstra R., Suraud E., Fischer B., Camus N., Kremer M., Moshammer R. and Schlatholter T., Femtosecond laser induced ionization and dissociation of gas-phase protonated leucine enkephalin, Int. J. Mass Spectrom., 365-366 (2014) 365, special issue: Tilmann Maerk. doi:https://doi.org/10.1016/j.ijms.2014.01.004.

    Article  Google Scholar 

  118. Mooney C. R. S., Horke D. A., Chatterley A. S., Simperler A., Fielding H. H. and Verlet J. R. R., Taking the green fluorescence out of the protein: dynamics of the isolated gfp chromophore anion, Chem. Sci., 4 (2013) 921. doi:https://doi.org/10.1039/C2SC21737F.

    Article  Google Scholar 

  119. Feraud G., Dedonder C., Jouvet C., Inokuchi Y., Haino T., Sekiya R. and Ebata T., Development of ultraviolet-ultraviolet hole-burning spectroscopy for cold gas-phase ions, J. Phys. Chem. Lett., 5 (2014) 1236. doi:https://doi.org/10.1021/jz500478w.

    Article  Google Scholar 

  120. Chatterley A. S., West C. W., Stavros V. G. and Verlet J. R. R., Time-resolved photoelectron imaging of the isolated deprotonated nucleotides, Chem. Sci., 5 (2014) 3963. doi:https://doi.org/10.1039/C4SC01493F.

    Article  Google Scholar 

  121. Hutzler N. R., Lu H.-I. and Doyle J. M., The buffer gas beam: An intense, cold, and slow source for atoms and molecules, Chem. Rev., 112 (2012) 4803. doi:https://doi.org/10.1021/cr200362u.

    Article  Google Scholar 

  122. Tanaka K., Waki H., Ido Y., Akita S., Yoshida Y., Yoshida T. and Matsuo T., Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom., 2 (1988) 151. doi:https://doi.org/10.1002/rcm.1290020802.

    Article  ADS  Google Scholar 

  123. Taherkhani M., Riese M., BenYezzar M. and Moeller-Dethlefs K., A novel experimental system of high stability and lifetime for the laser-desorption of biomolecules, Rev. Sci. Instrum., 81 (2010) 063101. doi:https://doi.org/10.1063/1.3373977.

    Article  ADS  Google Scholar 

  124. Saigusa H., Tomioka A., Katayama T. and Iwase E., A matrix-free laser desorption method for production of nucleobase clusters and their hydrates, Chem. Phys. Lett., 418 (2006) 119. doi:https://doi.org/10.1016/j.cplett.2005.10.086.

    Article  ADS  Google Scholar 

  125. Wei J., Buriak J. M. and Siuzdak G., Desorption-ionization mass spectrometry on porous silicon, Nature, 399 (1999) 243. doi:https://doi.org/10.1038/20400.

    Article  ADS  Google Scholar 

  126. Arakawa R. and Kawasaki H., Functionalized nanoparticles and nanostructured surfaces for surface-assisted laser desorption/ionization mass spectrometry, Anal. Sci., 26 (2010) 1229. doi:https://doi.org/10.2116/analsci.26.1229.

    Article  Google Scholar 

  127. Allwood D. A., Dreyfus R. W., Perera I. K. and Dyer P. E., Uv optical absorption of matrices used for matrix-assisted laser desorption/ionization, Rapid Commun. Mass Spectrom., 10 (1996) 1575. doi:https://doi.org/10.1002/(SICI)1097-0231(199610)10:13<1575::AID-RCM658>3.0.CO;2-C.

    Article  ADS  Google Scholar 

  128. Merrigan T. L., Hunniford C. A., Timson D. J., Morrow T., Catney M. and McCullough R. W., Formation of gas phase macromolecular targets by laser desorption from surfaces, J. Phys.: Conf. Ser., 101 (2008) 012016.

    Google Scholar 

  129. Hall R. B., Pulsed-laser-induced desorption studies of the kinetics of surface reactions, J. Phys. Chem., 91 (1987) 1007. doi:https://doi.org/10.1021/j100289a003.

    Article  Google Scholar 

  130. Levis R. J., Laser desorption and ejection of biomolecules from the condensed phase into the gas phase, Annu. Rev. Phys. Chem., 45 (1994) 483. doi:https://doi.org/10.1146/annurev.pc.45.100194.002411.

    Article  ADS  Google Scholar 

  131. Levy D. H., The spectroscopy of very cold gases, Science, 214 (1981) 263.

    Article  ADS  Google Scholar 

  132. Cable J. R., Tubergen M. J. and Levy D. H., Laser desorption molecular beam spectroscopy: the electronic spectra of tryptophan peptides in the gas phase, J. Am. Chem. Soc., 109 (1987) 6198. doi:https://doi.org/10.1021/ja00254a057.

    Article  Google Scholar 

  133. Boesl U., Grotemeyer J., Walter K. and Schlag E., A high-resolution time-of-flight mass spectrometer with laser desorption and a laser ionization source, Instrum. Sci. Technol., 16 (1987) 151. doi:https://doi.org/10.1080/10739148708543633.

    Article  Google Scholar 

  134. Li L. and Lubman D. M., Pulsed laser desorption method for volatilizing thermally labile molecules for supersonic jet spectroscopy, Rev. Sci. Instrum., 59 (1988) 557. doi:https://doi.org/10.1063/1.1139832.

    Article  ADS  Google Scholar 

  135. Arrowsmith P., de Vries M. S., Hunziker H. E. and Wendt H. R., Laser desorption in front of a free jet nozzle: Distribution of desorbed material in the gas expansion, AIP Conf. Proc., 172 (1988) 770. doi:https://doi.org/10.1063/1.37480.

    Article  ADS  Google Scholar 

  136. Meijer G., de Vries M. S., Hunziker H. E. and Wendt H. R., Laser desorption jet-cooling of organic molecules, Appl. Phys. B, 51 (1990) 395. doi:https://doi.org/10.1007/BF00329101.

    Article  ADS  Google Scholar 

  137. Teschmit N., Dlugolecki K., Gusa D., Rubinsky I., Horke D. A. and Kuepper J., Characterizing and optimizing a laser-desorption molecular beam source, J. Chem. Phys., 147 (2017) 144204. doi:https://doi.org/10.1063/1.4991639, arXiv:1706.04083v2.

    Article  ADS  Google Scholar 

  138. Lindner B. and Seydel U., Laser desorption mass spectrometry of nonvolatiles under shock wave conditions, Anal. Chem., 57 (1985) 895. doi:https://doi.org/10.1021/ac00281a027.

    Article  Google Scholar 

  139. Zinovev A. V., Veryovkin I. V., Moore J. F. and Pellin M. J., Laser-driven acoustic desorption of organic molecules from back-irradiated solid foils, Anal. Chem., 79 (2007) 8232. doi:https://doi.org/10.1021/ac070584o.

    Article  Google Scholar 

  140. Sezer U., Woerner L., Horak J., Felix L., Tuxen J., Gotz C., Vaziri A., Mayor M. and Arndt M., Laser-induced acoustic desorption of natural and functionalized biochromophores, Anal. Chem., 87 (2015) 5614. doi:https://doi.org/10.1021/acs.analchem.5b00601.

    Article  Google Scholar 

  141. Perez J., Ramirez-Arizmendi L. E., Petzold C. J., Guler L. P., Nelson E. D. and Kenttamaa H. I., Laser-induced acoustic desorption/chemical ionization in fourier-transform ion cyclotron resonance mass spectrometry, Int. J. Mass Spectrom., 198 (2000) 173. doi:https://doi.org/10.1016/S1387-3806(00)00181-0.

    Article  Google Scholar 

  142. Shea R. C., Petzold C. J., Campbell J. L., Li S., Aaserud D. J. and Kenttamaa H. I., Characterization of laser-induced acoustic desorption coupled with a fourier transform ion cyclotron resonance mass spectrometer, Anal. Chem., 78 (2006) 6133. doi:https://doi.org/10.1021/ac0602827.

    Article  Google Scholar 

  143. Shea R. C., Habicht S. C., Vaughn W. E. and Kenttamaa H. I., Design and characterization of a high-power laser-induced acoustic desorption probe coupled with a Fourier transform ion cyclotron resonance mass spectrometer, Anal. Chem., 79 (2007) 2688. doi:https://doi.org/10.1021/ac061597p.

    Article  Google Scholar 

  144. Nyadong L., McKenna A. M., Hendrickson C. L., Rodgers R. P. and Marshall A. G., Atmospheric pressure laser-induced acoustic desorption chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for the analysis of complex mixtures, Anal. Chem., 83 (2011) 1616. doi:https://doi.org/10.1021/ac102543s.

    Article  Google Scholar 

  145. Calvert C. R., Belshaw L., Duffy M. J., Kelly O., King R. B., Smyth A. G., Kelly T. J., Costello J. T., Timson D. J., Bryan W. A., Kierspel T., Rice P., Turcu I. C. E., Cacho C. M., Springate E., Williams I. D. and Greenwood J. B., Liad-fs scheme for studies of ultrafast laser interactions with gas phase biomolecules, Phys. Chem. Chem. Phys., 14 (2012) 6289. doi:https://doi.org/10.1039/C2CP23840C.

    Article  Google Scholar 

  146. Duffy M. J., Kelly O., Calvert C. R., King R. B., Belshaw L., Kelly T. J., Costello J. T., Timson D. J., Bryan W. A., Kierspel T., Turcu I. C. E., Cacho C. M., Springate E., Williams I. D. and Greenwood J. B., Fragmentation of neutral amino acids and small peptides by intense, femtosecond laser pulses, J. Am. Soc. Mass Spectrom., 24 (2013) 1366. doi:https://doi.org/10.1007/s13361-013-0653-6.

    Article  ADS  Google Scholar 

  147. Huang Z., Ossenbrggen T., Rubinsky I., Schust M., Horke D. A. and Kpper J., Development and characterization of a laser-induced acoustic desorption source, arXiv:1710.06684 (10 2017).

  148. Poully J.-C., Miles J., De Camillis S., Cassimi A. and Greenwood J. B., Proton irradiation of dna nucleosides in the gas phase, Phys. Chem. Chem. Phys., 17 (2015) 7172. doi: https://doi.org/10.1039/C4CP05303F.

    Article  Google Scholar 

  149. Zinovev A., Veryovkin I. and Pellin M., Molecular desorption by laserâ driven acoustic waves: Analytical applications and physical mechanisms, in: Beghi M. G. (Editor), Acoustic Waves — From Microdevices to Helioseismology (InTech, Rijeka, Croatia), 2011, Ch. 16, p. 343. ISBN 978-953-307-572-3.

    Google Scholar 

  150. Calegari F., Ayuso D., Trabattoni A., Belshaw L., Camillis S. D., Frassetto F., Poletto L., Palacios A., Decleva P., Greenwood J. B., Martn F. and Nisoli M., Ultrafast charge dynamics in an amino acid induced by attosecond pulses, IEEE J. Sel. Topics Quantum Electron., 21 (2015) 8700512. doi:https://doi.org/10.1109/JSTQE.2015.2419218.

    Article  Google Scholar 

  151. Banstola B. and Murray K. K., Pulsed valve matrix-assisted ionization, Analyst, 142 (2017) 1672. doi:https://doi.org/10.1039/C7AN00489C.

    Article  ADS  Google Scholar 

  152. Hopp B., Smausz T., Antal Z., Kresz N., Bor Z. and Chrisey D., Absorbing film assisted laser induced forward transfer of fungi (trichoderma conidia), J. Appl. Phys., 96 (2004) 3478. doi:https://doi.org/10.1063/1.1782275.

    Article  ADS  Google Scholar 

  153. Bulgakov A. V., Goodfriend N., Nerushev O., Bulgakova N. M., Starinskiy S. V., Shukhov Y. G. and Campbell E. E. B., Laser-induced transfer of nanoparticles for gas-phase analysis, J. Opt. Soc. Am. B, 31 (2014) C15. doi:https://doi.org/10.1364/JOSAB.31.000C15.

    Article  Google Scholar 

  154. Goodfriend N. T., Starinskiy S. V., Nerushev O. A., Bulgakova N. M., Bulgakov A. V. and Campbell E. E. B., Laser pulse duration dependence of blister formation on back-radiated Ti thin films for BB-LIFT, Appl. Phys. A, 122 (2016) 154. doi:https://doi.org/10.1007/s00339-016-9666-x.

    Article  ADS  Google Scholar 

  155. Breidbach J. and Cederbaum L. S., Universal attosecond response to the removal of an electron, Phys. Rev. Lett., 94 (2005) 033901. doi:https://doi.org/10.1103/PhysRevLett.94.033901.

    Article  ADS  Google Scholar 

  156. Stener M., Lisini A. and Decleva P., Accurate local density photoionization cross sections by lcao stieltjes imaging approach, Int. J. Quant. Chem., 53 (1995) 229. doi:https://doi.org/10.1002/qua.560530208.

    Article  Google Scholar 

  157. Stener M. and Decleva P., Time-dependent density functional calculations of molecular photoionization cross sections: N2 and ph3, J. Chem. Phys., 112 (2000) 10871. doi:https://doi.org/10.1063/1.481755.

    Article  ADS  Google Scholar 

  158. Toffoli G. F. D., Stener M. and Decleva P., Convergence of the multicenter b-spline dft approach for the continuum, Chem. Phys., 276 (2002) 25. doi:https://doi.org/10.1016/S0301-0104(01)00549-3.

    Article  Google Scholar 

  159. Stener M., Fronzoni G. and Decleva P., Time-dependent density-functional theory for molecular photoionization with noniterative algorithm and multicenter b-spline basis set: Cs2 and c6h6 case studies, J. Chem. Phys., 122 (2005) 234301. doi:https://doi.org/10.1063/1.1937367.

    Article  ADS  Google Scholar 

  160. Canton S. E., Plesiat E., Bozek J. D., Rude B. S., Decleva P. and Martin F., Direct observation of Young’s double-slit interferences in vibrationally resolved photoionization of diatomic molecules, Proc. Natl. Acad. Sci., 108 (2011) 7302. doi:https://doi.org/10.1073/pnas.1018534108.

    Article  ADS  Google Scholar 

  161. Kukk E., Ayuso D., Thomas T. D., Decleva P., Patanen M., Argenti L., Plésiat E., Palacios A., Kooser K., Travnikova O., Mondal S., Kimura M., Sakai K., Miron C., Martín F. and Ueda K., Effects of molecular potential and geometry on atomic core-level photoemission over an extended energy range: The case study of the CO molecule, Phys. Rev. A, 88 (2013) 033412. doi:https://doi.org/10.1103/PhysRevA.88.033412.

    Article  ADS  Google Scholar 

  162. Ueda K., Miron C., Plésiat E., Argenti L., Patanen M., Kooser K., Ayuso D., Mondal S., Kimura M., Sakai K., Travnikova O., Palacios A., Decleva P., Kukk E. and Martín F., Intramolecular photoelectron diffraction in the gas phase., J. Chem. Phys., 139 (2013) 124306. doi:https://doi.org/10.1063/1.4820814.

    Article  ADS  Google Scholar 

  163. Ayuso D., Kimura M., Kooser K., Patanen M., Plésiat E., Argenti L., Mondal S., Travnikova O., Sakai K., Palacios A., Kukk E., Decleva P., Ueda K., Martín F. and Miron C., Vibrationally Resolved B 1s Photoionization Cross Section of BF 3, J. Phys. Chem. A, 119 (2015) 5971. doi:https://doi.org/10.1021/jp511416h.

    Article  Google Scholar 

  164. Cpmd, (c) ibm corp 1990–2015, (c) mpi für festkörperforschung stuttgart 1997–2001, http://www.cpmd.org/(2014).

  165. Mendive-Tapia D., Vacher M., Bearpark M. J. and Robb M. A., Coupled electron-nuclear dynamics: Charge migration and charge transfer initiated near a conical intersection, J. Chem. Phys., 139 (2013) 044110. doi:https://doi.org/10.1063/1.4815914.

    Article  ADS  Google Scholar 

  166. Perfetto E., Sangalli D., Marini A. and Stefanucci G., Ultrafast charge migration in xuv photoexcited phenylalanine: A first-principles study based on real-time nonequilibrium green’s functions, J. Phys. Chem. Lett., 9 (2018) 1353. doi:https://doi.org/10.1021/acs.jpclett.8b00025.

    Article  Google Scholar 

  167. Fischer C. F. and Idrees M., Spline methods for resonances in photoionisation cross sections, J. Phys. B: At. Mol. Opt. Phys., 23 (1990) 679.

    Article  ADS  Google Scholar 

  168. Bachau H., Cormier E., Decleva P., Hansen J. E. and Martín F., Applications of b-splines in atomic and molecular physics, Rep. Prog. Phys., 64 (2001) 1815.

    Article  ADS  Google Scholar 

  169. Miller T. F. III and Clary D. C., Quantum free energies of the conformers of glycine on an ab initio potential energy surface, Phys. Chem. Chem. Phys., 6 (2004) 2563.

    Article  Google Scholar 

  170. Troullier N. and Martins J. L., Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, 43 (1991) 1993. doi:https://doi.org/10.1103/PhysRevB.43.1993.

    Article  ADS  Google Scholar 

  171. Kleinman L. and Bylander D. M., Efficacious form for model pseudopotentials, Phys. Rev. Lett., 48 (1982) 1425.

    Article  ADS  Google Scholar 

  172. Curchod B. F. E., Rothlisberger U. and Tavernelli I., Trajectory-based nonadiabatic dynamics with time-dependent density functional theory, Chem. Phys. Chem, 14 (2013) 1314. doi:https://doi.org/10.1002/cphc.201200941.

    Article  Google Scholar 

  173. Vacher M., Mendive-Tapia D., Bearpark M. J. and Robb M. A., Electron dynamics upon ionization: Control of the timescale through chemical substitution and effect of nuclear motion, J. Chem. Phys., 142 (2015) 094105. doi:https://doi.org/10.1063/1.4913515.

    Article  ADS  Google Scholar 

  174. Lünnemann S., Kuleff A. I. and Cederbaum L. S., Ultrafast charge migration in 2-phenylethyl-N,N-dimethylamine, Chem. Phys. Lett., 450 (2008) 232. doi:https://doi.org/10.1016/j.cplett.2007.11.031.

    Article  ADS  Google Scholar 

  175. Kuleff A. I. and Cederbaum L. S., Charge migration in different conformers of glycine: The role of nuclear geometry, Chem. Phys., 338 (2007) 320. doi:https://doi.org/10.1016/j.chemphys.2007.04.012.

    Article  Google Scholar 

  176. Vacher M., Bearpark M. and Robb M., Communication: Oscillating charge migration between lone pairs persists without significant interaction with nuclear motion in the glycine and gly-gly-nh-ch3 radical cations, J. Chem. Phys., 140 (2014) 201102. doi:https://doi.org/10.1063/1.4879516.

    Article  ADS  Google Scholar 

  177. Despré V., Marciniak A., Loriot V., Galbraith M. C. E., Rouzée A., Vrakking M. J. J., Lépine F. and Kuleff A. I., Attosecond hole migration in benzene molecules surviving nuclear motion, J. Phys. Chem. Lett., 6 (2015) 426. doi:https://doi.org/10.1021/jz502493j.

    Article  Google Scholar 

  178. Ruberti M., Decleva P. and Averbukh V., Multi-channel dynamics in high harmonic generation of aligned co2: ab initio analysis with time-dependent b-spline algebraic diagrammatic construction, Phys. Chem. Chem. Phys., 20 (2018) 8311. doi:https://doi.org/10.1039/C7CP07849H.

    Article  Google Scholar 

  179. Mignolet B., Levine R. D. and Remacle F., Charge migration in the bifunctional PENNA cation induced and probed by ultrafast ionization: a dynamical study, J. Phys. B: At. Mol. Opt. Phys., 47 (2014) 124011. doi:https://doi.org/10.1088/0953-4075/47/12/124011.

    Article  ADS  Google Scholar 

  180. Boguslavskiy A. E., Mikosch J., Gijsbertsen A., Spanner M., Patchkovskii S., Gador N., Vrakking M. J. J. and Stolow A., The multielectron ionization dynamics underlying attosecond strong-field spectroscopies, Science, 335 (2012) 1336. doi:https://doi.org/10.1126/science.1212896.

    Article  ADS  Google Scholar 

  181. Petretti S., Vanne Y. V., Saenz A., Castro A. and Decleva P., Alignment-dep endent ionization of n2, o2, and co2 in intense laser fields, Phys. Rev. Lett., 104 (2010) 223001. doi:https://doi.org/10.1103/PhysRevLett.104.223001.

    Article  ADS  Google Scholar 

  182. Sun S., Mignolet B., Fan L., Li W., Levine R. D. and Remacle F., Nuclear motion driven ultrafast photodissociative charge transfer of the penna cation: An experimental and computational study, J. Phys. Chem. A, 121 (2017) 1442. doi:https://doi.org/10.1021/acs.jpca.6b12310.

    Article  Google Scholar 

  183. Mignolet B., Curchod B. F. E. and Martnez T. J., Communication: XFAIMS-external field ab initio multiple spawning for electron-nuclear dynamics triggered by short laser pulses, J. Chem. Phys., 145 (2016) 191104. doi:https://doi.org/10.1063/1.4967761.

    Article  ADS  Google Scholar 

  184. Mignolet B. and Curchod B. F. E., A walk through the approximations of ab initio multiple spawning, J. Chem. Phys., 148 (2018) 134110. doi:https://doi.org/10.1063/1.5022877.

    Article  ADS  Google Scholar 

  185. Beck M., Jackle A., Worth G. and Meyer H.-D., The multiconfiguration time-dependent hartree (mctdh) method: a highly efficient algorithm for propagating wavepackets, Phys. Rep., 324 (2000) 1. doi:https://doi.org/10.1016/S0370-1573(99)00047-2.

    Article  ADS  Google Scholar 

  186. Arnold C., Vendrell O. and Santra R., Electronic decoherence following photoionization: Full quantum-dynamical treatment of the influence of nuclear motion, Phys. Rev. A, 95 (2017) 033425. doi:https://doi.org/10.1103/PhysRevA.95.033425.

    Article  ADS  Google Scholar 

  187. Arnold C., Vendrell O., Welsch R. and Santra R., Control of nuclear dynamics through conical intersections and electronic coherences, Phys. Rev. Lett., 120 (2018) 123001. doi:https://doi.org/10.1103/PhysRevLett.120.123001.

    Article  ADS  Google Scholar 

  188. Komarova K. G., Remacle F. and Levine R., On the fly quantum dynamics of electronic and nuclear wave packets, Chem. Phys. Lett., 699 (2018) 155. doi:https://doi.org/10.1016/j.cplett.2018.03.050.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Calegari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calegari, F., Trabattoni, A., Månsson, E. et al. Attosecond spectroscopy of bio-chemically relevant molecules. Riv. Nuovo Cim. 41, 415–461 (2018). https://doi.org/10.1393/ncr/i2018-10150-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2018-10150-2

Navigation