Skip to main content
Log in

Theory of the insulating state

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

All undergraduates learn that Bloch theorem and band structure explain the insulating/metallic behavior of most crystalline solids across the periodic table. By the late 1950s it became clear that there exist classes of materials to which band theory does not apply: Mott insulators, where the insulating character is due to electron correlation, and Anderson insulators, where it is due to lattice disorder; other kinds of insulators followed. In a visionary 1964 paper W. Kohn stated that the insulating character of a material stems from a different organization of the electrons in their ground state, and does not require an energy gap. Kohn’s approach remained somewhat incomplete, and little visited for many years. The theory of the insulating state got a fresh restart from 1999 onwards: we present here a comprehensive state-of-the-art account. The modern theory, rooted in geometrical concepts, addresses all kinds of insulators on a common formal and computational basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloch F., Z. Phys., 52 (1928) 555.

    Article  ADS  Google Scholar 

  2. Wilson A. H., Proc. R. Soc. London A, 133 (1931) 458

    Article  ADS  Google Scholar 

  3. ibidem, 134 (1931) 277.

    ADS  Google Scholar 

  4. Mott N. F., Proc. Phys. Soc. (London), 62 (1949) 416.

    Article  ADS  Google Scholar 

  5. Anderson P. W., Phys. Rev., 109 (1958) 1492.

    ADS  Google Scholar 

  6. Mott N., Metal-Insulator Transitions, 2nd ed. (Taylor & Francis, London) 1990.

    Book  Google Scholar 

  7. Abrahams E. (Editor), 50 Years of Anderson Localization (World Scientific, Singapore) 2010.

    MATH  Google Scholar 

  8. Kohn W., Phys. Rev., 133 (1964) A171.

    Article  ADS  Google Scholar 

  9. Kohn W., in Many-Body Physics, edited by DeWitt C. and Balian R. (Gordon and Breach, New York) 1968, p. 351.

  10. Resta R. and Sorella S., Phys. Rev. Lett., 82 (1999) 370.

    Article  ADS  Google Scholar 

  11. Souza I., Wilkens T. and Martin R. M., Phys. Rev. B, 62 (2000) 1666.

    Article  ADS  Google Scholar 

  12. Sgiarovello C., Peressi M. and Resta R., Phys. Rev., 64 (2001) 115202.

    Article  Google Scholar 

  13. Resta R., J. Chem. Phys., 124 (2006) 104104.

    Article  ADS  Google Scholar 

  14. Resta R., Eur. Phys. J. B, 79 (2011) 121.

    Article  ADS  Google Scholar 

  15. Resta R., in The Physics of Correlated Insulators, Metals, and Superconductors Modeling and Simulation, Vol. 7, edited by Pavarini E., Koch E., Scalettar R. and Martin R. (Forschungszentrum Juelich) 2017, Ch. 3 https://www.cond-mat.de/events/correl17/.

  16. Resta R., Ferroelectrics, 136 (1992) 51.

    Article  Google Scholar 

  17. King-Smith R. D. and Vanderbilt D., Phys. Rev. B, 47 (1993) 1651.

    Article  ADS  Google Scholar 

  18. Vanderbilt D. and King-Smith R. D., Phys. Rev. B, 48 (1993) 4442.

    Article  ADS  Google Scholar 

  19. Resta R., Phys. Rev. Lett., 80 (1998) 1800.

    Article  ADS  Google Scholar 

  20. Resta R., Rev. Mod. Phys., 66 (1994) 899.

    Article  ADS  Google Scholar 

  21. Resta R., Il Nuovo Saggiatore, Vol. 9, issue 5–6 (1993) p. 79.

    Google Scholar 

  22. Resta R., Europhysics News, 28 (1997) 18.

    Article  ADS  Google Scholar 

  23. Vanderbilt D. and Resta R., in Conceptual foundations of materials: A standard model for ground- and excited-state properties, edited by Louie S. G. and Cohen M. L. (Elsevier) 2006, p. 139.

  24. Resta R. and Vanderbilt D., in Physics of Ferroelectrics: a Modern Perspective, Topics in Applied Physics, Vol. 105, edited by Ahn Ch. H., Rabe K. M. and Triscone J.-M. (Springer-Verlag) 2007, p. 31.

    Article  Google Scholar 

  25. Resta R., J. Phys.: Condens. Matter, 22 (2010) 123201.

    ADS  Google Scholar 

  26. Spaldin N. A., J. Solid State Chem., 195 (2012) 2.

    Article  ADS  Google Scholar 

  27. Vanderbilt D., Berry Phases in Electronic Structure Theory (Cambridge University Press, Cambridge) 2018.

    Book  MATH  Google Scholar 

  28. Thouless D. J., Phys. Rev. B, 27 (1983) 6083.

    Article  ADS  MathSciNet  Google Scholar 

  29. Lundqvist S. and March N. H. (Editors), Theory of the Inhomogeneous Electron Gas (Plenum, New York) 1983.

    Google Scholar 

  30. Dreizler R. M. and da Providencia J. (Editors), Density Functional Methods in Physics (Plenum, New York) 1985.

    Book  Google Scholar 

  31. Kudin K. N., Car R. and Resta R., J. Chem. Phys., 127 (2007) 194902.

    Article  ADS  Google Scholar 

  32. Heine V., Phys. Rev., 145 (1966) 593.

    Article  ADS  Google Scholar 

  33. Appelbaum J. A. and Hamann D. R., Phys. Rev. B, 10 (1974) 4973.

    Article  ADS  Google Scholar 

  34. Kleinman L., Phys. Rev. B, 11 (1975) 858.

    Article  ADS  Google Scholar 

  35. Claro F., Phys. Rev. B, 17 (1977) 699.

    Article  ADS  Google Scholar 

  36. Niu Q., Phys. Rev., 33 (1986) 5368.

    Article  ADS  Google Scholar 

  37. Niu Q. and Thouless D. J., J. Phys. A, 17 (1984) 2453.

    Article  ADS  MathSciNet  Google Scholar 

  38. Zak J., Phys. Rev. Lett., 62 (1989) 2747.

    Article  ADS  Google Scholar 

  39. Marder M. P., Condensed Matter Physics (Wiley, New York) 2000.

    Google Scholar 

  40. Grosso G. and Pastori Parravicini G., Solid State Physics, second edition (Elsevier, Amsterdam) 2014.

    Google Scholar 

  41. Lines M. E. and Glass A. M., Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford) 1977.

    Google Scholar 

  42. Resta R., Posternak M. and Baldereschi A., Phys. Rev. Lett., 70 (1993) 1010.

    Article  ADS  Google Scholar 

  43. Rabe K. M. and Ghosez Ph., in Conceptual foundations of materials: A standard model for ground- and excited-state properties, edited by Louie S. G. and Cohen M. L. (Elsevier) 2006, p. 117.

  44. Debernardi A., Bernasconi M., Cardona M. and Parrinello M., Appl. Phys. Lett. 71 (1997) 2692.

    Article  ADS  Google Scholar 

  45. Silvestrelli P. L., Bernasconi M. and Parrinello M., Chem. Phys. Lett., 277 (1997) 478.

    Article  ADS  Google Scholar 

  46. Chen W., Sharma M., Resta R., Galli G. and Car R., Phys. Rev. B, 77 (2008) 245114.

    Article  ADS  Google Scholar 

  47. Wannier G. H., Phys. Rev., 52 (1937) 191.

    Article  ADS  Google Scholar 

  48. Marzari N. and Vanderbilt D., Phys. Rev. B, 56 (1997) 12847.

    Article  ADS  Google Scholar 

  49. Marzari N., Mostofi A. A., Yates J. R., Souza I. and Vanderbilt D., Rev. Mod. Phys., 84 (2012) 1419.

    Article  ADS  Google Scholar 

  50. Berry M. V., Proc. R. Soc. London, Ser. A, 392 (1984) 45.

    ADS  Google Scholar 

  51. Berry M. V., Nat. Phys., 6 (2010) 148.

    Article  Google Scholar 

  52. Provost J. P. and Vallee G., Commun. Math Phys., 76 (1980) 289.

    Article  ADS  Google Scholar 

  53. Resta R., https://arxiv.org/abs/1703.00712.

  54. Ashcroft N. W. and Mermin N. D., Solid State Physics (Saunders, Philadelphia) 1976, Ch. 1 and Ch. 13.

    MATH  Google Scholar 

  55. Allen P. B., in Conceptual foundations of materials: A standard model for ground- and excited-state properties, edited by Louie S. G. and Cohen M. L. (Elsevier) 2006, p. 139.

  56. Scalapino D. J., White S. R. and Zhang S. C., Phys. Rev., 47 (1993) 7995.

    Article  ADS  Google Scholar 

  57. Gao Y., Yang S. A. and Niu Q., Phys. Rev. B, 91 (2015) 214405.

    Article  ADS  Google Scholar 

  58. Wang X., Vanderbilt D., Yates J. R. and Souza I., Phys. Rev. B, 76 (2007) 195109.

    Article  ADS  Google Scholar 

  59. Ortíz G. and Martin R. M., Phys. Rev. B, 49 (1994) 14202.

    Article  ADS  Google Scholar 

  60. Ashcroft N. W. and Mermin N. D., Solid State Physics (Saunders, Philadelphia) 1976, Appendix E.

    MATH  Google Scholar 

  61. Grosso G. and Pastori Parravicini G., Solid State Physics, second edition (Elsevier, Amsterdam) 2014, Sec. 2.6.2.

    Google Scholar 

  62. Bures D., Trans. Am. Math. Soc., 135 (1969) 199.

    Google Scholar 

  63. Resta R., Phys. Rev. Lett., 96 (2006) 137601.

    Article  ADS  Google Scholar 

  64. He L. and Vanderbilt D., Phys. Rev. Lett., 86 (2001) 5341.

    Article  ADS  Google Scholar 

  65. Giuliani G. F. and Vignale G., Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge) 2005.

    Book  Google Scholar 

  66. Bendazzoli G. L., Evangelisti S., Monari A. and Resta R., J. Chem. Phys., 133 (2010) 064703.

    Article  ADS  Google Scholar 

  67. Bendazzoli G. L., Evangelisti S. and Monari A., Int. J. Quantum Chem., 112 (2012) 653.

    Article  Google Scholar 

  68. Marrazzo A. and Resta R., https://arxiv.org/abs/1807.01063.

  69. Zubarev D. N., Non-Equilibrium Statistical Thermodynamic (Consultants Bureau, New York) 1974.

    Google Scholar 

  70. Zubarev D. N., Sov. Phys. Ushp., 3 (1960) 320.

    Article  ADS  Google Scholar 

  71. McWeeny R., Methods of Molecular Quantum Mechanics, second edition (Academic, London) 1992.

    Google Scholar 

  72. Chandler D., Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford) 1987.

    Google Scholar 

  73. Akkermans E., J. Math. Phys., 38 (1997) 1781.

    Article  ADS  MathSciNet  Google Scholar 

  74. Rigol M. and Shastry B. S., Phys. Rev. B, 77 (2008) 161101(R).

    Article  ADS  Google Scholar 

  75. Pilar F. L., Elementary Quantum Chemistry (McGraw-Hill) 1990.

  76. Abrahams E., Anderson P. W., Licciardello D. C. and Ramakrishnan T. V., Phys. Rev. Lett., 42 (1979) 673.

    Article  ADS  Google Scholar 

  77. Kramer B. and MacKinnon A., Rep. Prog. Phys., 56 (1993) 1469.

    Article  ADS  Google Scholar 

  78. Thouless D. J., Phys. Rep., 13 (1974) 93.

    Article  ADS  Google Scholar 

  79. Lagendijk A., van Tiggelen B. and Wiersma D. S., Phys. Today, 62(8) (2009) 24.

    Article  Google Scholar 

  80. MacKinnon A. and Kramer B., Phys. Rev. Lett., 47 (1981) 1546.

    Article  ADS  Google Scholar 

  81. Hofstetter E. and Schreiber M., Phys. Rev. B, 49 (1994) 14726.

    Article  ADS  Google Scholar 

  82. Slevin K. and Ohtsuki T., Phys. Rev. Lett., 82 (1999) 382.

    Article  ADS  Google Scholar 

  83. Rodriguez A., Vasquez L. J., Slevin K. and Römer R. A., Phys. Rev. B, 84 (2011) 134209.

    Article  ADS  Google Scholar 

  84. Evers F. and Mirlin A. D., Rev. Mod. Phys., 80 (2008) 1355.

    Article  ADS  Google Scholar 

  85. Olsen T., Resta R. and Souza I., Phys. Rev. B, 95 (2017) 045109.

    Article  ADS  Google Scholar 

  86. Ziman J. M., Models of Disorder (Cambridge University Press, Cambridge) 1979.

    Google Scholar 

  87. Wilkens T. and Martin R. M., Phys. Rev. B, 63 (2001) 235108.

    Article  ADS  Google Scholar 

  88. Tamura S. and Yokoyama H., JPS Conf. Proc., 3 (2014) 013003.

    Google Scholar 

  89. Varma V. K. and Pilati S., Phys. Rev. B, 92 (2015) 134207.

    Article  ADS  Google Scholar 

  90. Resta R. and Sorella S., Phys. Rev. Lett., 87 (1995) 4738.

    Article  ADS  Google Scholar 

  91. Resta R., Eur. Phys J. B, 91 (2018) 100.

    Article  ADS  Google Scholar 

  92. Kane C. L. and Mele E. J., Phys. Rev. Lett., 95 (2005) 226801.

    Article  ADS  Google Scholar 

  93. Jadaun P., Xiao D., Niu Q. and Banerjee S. K., Phys. Rev. B, 88 (2013) 085110.

    Article  ADS  Google Scholar 

  94. Thouless D. J., Kohmoto M., Nightingale M. P. and den Nijs M., Phys. Rev. Lett., 49 (1982) 405.

    Article  ADS  Google Scholar 

  95. Stella L., Attaccalite C., Sorella S. and Rubio A., Phys. Rev. B, 84 (2011) 245117.

    Article  ADS  Google Scholar 

  96. El Khatib M. et al., J. Chem. Phys., 142 (2015) 094113.

    Article  ADS  Google Scholar 

  97. von Klitzing K., Dorda G. and Pepper M., Phys. Rev. Lett., 45 (1980) 494.

    Article  ADS  Google Scholar 

  98. Laughlin R. B., Phys. Rev. B, 23 (1981) 5632.

    Article  ADS  Google Scholar 

  99. Yoshioka D., The Quantum Hall Effect (Springer, Berlin) 2002.

    Book  MATH  Google Scholar 

  100. Nagaosa N., Sinova J., Onoda S., MacDonald A. H. and Ong N. P., Rev. Mod. Phys., 82 (2010) 1539.

    Article  ADS  Google Scholar 

  101. Hofstadter D. R., Phys. Rev. B, 14 (1976) 2239.

    Article  ADS  Google Scholar 

  102. Haldane F. D. M., Phys. Rev. Lett., 61 (1988) 2015.

    Article  ADS  MathSciNet  Google Scholar 

  103. Chang C.-Z. et al., Science, 340 (2013) 167.

    Article  ADS  Google Scholar 

  104. Chang C.-Z. et al., Nat. Mater., 14 (2015) 473.

    Article  ADS  Google Scholar 

  105. Niu Q., Thouless D. J. and Wu Y. S., Phys. Rev. B, 31 (1985) 3372.

    Article  ADS  MathSciNet  Google Scholar 

  106. Resta R., Phys. Rev. Lett., 95 (2005) 196805.

    Article  ADS  Google Scholar 

  107. Bianco R., Resta R. and Souza I., Phys. Rev. B, 90 (2014) 125153.

    Article  ADS  Google Scholar 

  108. Marrazzo A. and Resta R., Phys. Rev. B, 95 (2017) 121114(R).

    Article  ADS  Google Scholar 

  109. Jungwirth T., Niu Q. and MacDonald A. H., Phys. Rev. Lett., 88 (2002) 207208.

    Article  ADS  Google Scholar 

  110. Onoda M. and Nagaosa N., J. Phys. Soc. Jpn., 71 (2002) 19.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Resta, R. Theory of the insulating state. Riv. Nuovo Cim. 41, 463–512 (2018). https://doi.org/10.1393/ncr/i2018-10151-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2018-10151-1

Navigation