Skip to main content
Log in

Temporal evolution, directionality of time and irreversibility

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

The aim of the present interdisciplinary review is to carry out a comparative analysis of the notions of thermodynamic entropy, information entropy and entropy of non-equilibrium states and flow of entropy from a critical perspective. The problems of temporal evolution and time directionality are discussed in this context as well. The interrelation of these notions is studied with focusing on the non-equilibrium entropy. The paper is aimed to clarify the notion of entropy, entropy production and its generalizations. The Boltzmann, Gibbs, von Neumann, Shannon, Renyi, Tsallis and others types of entropy are considered concisely. The notions of the steady state, local state and local equilibrium are analyzed thoroughly to expose similarities and dissimilarities of various approaches to the definition of the entropy of nonequilibrium states. The extremal principles for entropy and entropy production are analyzed and discussed in this connection. The purpose of the present study is to elucidate certain aspects of the non-equilibrium statistical mechanics, namely the principal role of the correct description of the temporal evolution of a system and the corresponding procedure of averaging. We also touch tersely the intriguing problems of directionality of time and causality as well as relevance of constructal law that accounts for the phenomenon of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Planck M., On the principle of the entropy increasing. I, Wied. Ann., 30 (1887) 562.

    Article  Google Scholar 

  2. Boltzmann L., Lectures on Gas Theory (University of California Press, Berkeley) 1964.

    Book  Google Scholar 

  3. Bogoliubov N. N., Problems of a Dynamical Theory in Statistical Physics, in Studies in Statistical Mechanics, edited by de Boer J. and Uhlenbeck G. E., Vol. 1 (North-Holland, Amsterdam) 1962, pp. 1–118.

    Google Scholar 

  4. Kuzemsky A. L., Thermodynamic limit in statistical physics, Int. J. Mod. Phys. B, 28 (2014) 1430004.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Jaynes E. T., Gibbs vs. Boltzmann entropies, Am. J. Phys., 33 (1965) 391.

    Article  ADS  MATH  Google Scholar 

  6. Ehrenfest P. and Ehrenfest T., The Conceptual Foundations of the Statistical Approach in Mechanics (Cornell University Press, New York) 1959.

    MATH  Google Scholar 

  7. Mehra J. and Sudarshan E. C. G., Some reflections on the nature of entropy, irreversibility and the second law of thermodynamics, Nuovo Cimento B, 11 (1972) 215.

    Article  ADS  MathSciNet  Google Scholar 

  8. Zubarev D. N., Nonequilibrium Statistical Thermodynamics (Consultant Bureau, New York) 1974.

    Google Scholar 

  9. Jaynes E. T., Papers on Probability, Statistics and Statistical Physics (D. Reidel Publ., Dordrecht) 1983.

    MATH  Google Scholar 

  10. Grandy W. T. and Milloni P. W. (Editors), Physics and Probability: Essays in Honor of Edwin T. Jaynes (Cambridge University Press, New York) 1993.

    Google Scholar 

  11. Jaynes E. T., Probability Theory: The Logic of Science (Cambridge University Press, New York) 2003.

    Book  MATH  Google Scholar 

  12. Kuzemsky A. L., Probability, information and statistical physics, Int. J. Theor. Phys., 55 (2016) 1378.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuzemsky A. L., Statistical Mechanics and the Physics of Many-Particle Model Systems (World Scientific, Singapore) 2017.

    Book  MATH  Google Scholar 

  14. Wu T. Y., On the nature of theories of irreversible processes, Int. J. Theor. Phys., 2 (1969) 325.

    Article  Google Scholar 

  15. Lebowitz J. L., Microscopic origins of irreversible macroscopic behavior, Physica A, 263 (1999) 516.

    Article  ADS  MathSciNet  Google Scholar 

  16. Grad H., The many faces of entropy, Commun. Pure Appl. Math., 14 (1961) 323.

    Article  MathSciNet  MATH  Google Scholar 

  17. Jaynes E. T., Information theory and statistical mechanics, Phys. Rev., 106 (1957) 620.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Jaynes E. T., Information theory and statistical mechanics — II, Phys. Rev., 108 (1957) 171.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Balian R., Incomplete descriptions and relevant entropies, Am. J. Phys., 67 (1999) 1078.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Stotland A., Pomeransky A., Bachmat E. and Cohen D., The information entropy of quantum-mechanical states, Europhys. Lett., 67 (2004) 700.

    Article  ADS  MathSciNet  Google Scholar 

  21. Shannon C. E., A mathematical theory of communication. Part I, Bell Syst. Tech. J., 27 (1948) 379.

    Article  MATH  Google Scholar 

  22. Shannon C. E., A mathematical theory of communication. Part II, Bell Syst. Tech. J., 27 (1948) 623.

    Article  MATH  Google Scholar 

  23. Tribus M. and McIrvine E. C., Energy and information, Sci. Am., 225 (1971) 179.

    Article  Google Scholar 

  24. Costa de Beauregard O. and Tribus M., Information theory and thermodynamics, Helv. Phys. Acta, 47 (1974) 238.

    MathSciNet  Google Scholar 

  25. Landauer R., Information is physical, Phys. Today, 91 (1991) 23.

    Article  Google Scholar 

  26. Landauer R., The physical nature of information, Phys. Lett. A, 217 (1996) 188.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Caves C. M., Information and entropy, Phys. Rev. E, 47 (1993) 4010.

    Article  ADS  Google Scholar 

  28. Burgin M., Theory of Information: Fundamentality, Diversity and Unification (World Scientific, Singapore) 2010.

    MATH  Google Scholar 

  29. Ebeling W., Physical basis of information and the relation to entropy, Eur. J. Phys., 226 (2017) 161.

    Google Scholar 

  30. Khinchin A. Ya., Mathematical Foundations of Information Theory (Dover Publ., New York) 1957.

    MATH  Google Scholar 

  31. Cover T. M. and Thomas J. A., Elements of Information Theory (John Wiley and Sons, New York) 1991.

    Book  MATH  Google Scholar 

  32. MacKay D. J. C., Information Theory, Inference, and Learning Algorithms (Cambridge University Press, Cambridge) 2003.

    MATH  Google Scholar 

  33. Desurvire E., Classical and Quantum Information Theory (Cambridge University Press) 2009.

  34. Muller I. and Weiss W., Entropy and Energy. A Universal Competition (Springer, Berlin) 2005.

    MATH  Google Scholar 

  35. Muller I., A History of Thermodynamics. The Doctrine of Energy and Entropy (Springer, Berlin) 2007.

    MATH  Google Scholar 

  36. Muller I. and Muller W. H., Fundamentals of Thermodynamics and Applications (Springer, Berlin) 2009.

    MATH  Google Scholar 

  37. Eu Byung Chan, Generalized Thermodynamics. The Thermodynamics of Irreversible Processes and Generalized Hydrodynamics (Kluwer Publ., Boston, London) 2004.

    MATH  Google Scholar 

  38. Kondepudi D., Introduction to Modern Thermodynamics (John Wiley and Sons, New York) 2008.

    Google Scholar 

  39. Grandy W. T., Entropy and the Time Evolution of Macroscopic Systems (Oxford University Press, New York) 2008.

    Book  MATH  Google Scholar 

  40. Starzak M. E., Energy and Entropy. Equilibrium to Stationary States (Springer, Berlin) 2010.

    Google Scholar 

  41. Thess A., The Entropy Principle: Thermodynamics for the Unsatisfied (Springer, Berlin) 2011.

    Book  MATH  Google Scholar 

  42. Ottinger H. C., Beyond Equilibrium Thermodynamics (John Wiley and Sons, New York) 2005.

    Book  Google Scholar 

  43. Kleidon A. and Lorenz R. D. (Editors), Nonequilibrium Thermodynamics and the Production of Entropy. Life, Earth, and Beyond (Springer, Berlin) 2005.

    Google Scholar 

  44. Ross J., Thermodynamics and Fluctuations far from Equilibrium (Springer, Berlin) 2008.

    Book  Google Scholar 

  45. Boyling J. B., Carnot engines and the principle of increase of entropy, Int. J. Theor. Phys., 7 (1973) 291.

    Article  Google Scholar 

  46. Boyling J. B., Thermodynamics of non-differentiable systems, Int. J. Theor. Phys., 9 (1974) 379.

    Article  MathSciNet  Google Scholar 

  47. Boyling J. B., The converse of the entropy principle for compound systems, Int. J. Theor. Phys., 13 (1975) 143.

    Article  MathSciNet  Google Scholar 

  48. Shiner J. S. (Editor), Entropy and Entropy Generation: Fundamentals and Applications (Springer, Berlin) 1996.

    Google Scholar 

  49. Gray R. M., Entropy and Information Theory (Springer, Berlin) 2000.

    Google Scholar 

  50. Greven A., Keller G. and Warnecke G. (Editors), Entropy (Princeton University Press, Princeton) 2003.

    MATH  Google Scholar 

  51. Martyushev L. M. and Seleznev V. D., Maximum entropy production principle in physics, chemistry and biology, Phys. Rep., 426 (2006) 1.

    Article  ADS  MathSciNet  Google Scholar 

  52. Kuzemsky A. L., Theory of transport processes and the method of the nonequilibrium statistical operator, Int. J. Mod. Phys. B, 21 (2007) 2821.

    Article  ADS  MATH  Google Scholar 

  53. Demirel Y., Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems (Elsevier, Amsterdam) 2014.

    MATH  Google Scholar 

  54. Dewar R. C., Lineweaver C. H., Niven, R. K. and Regenauer-Lieb K. (Editors), Beyond the Second Law. Entropy Production and Non-equilibrium Systems (Springer, Berlin) 2014.

    Google Scholar 

  55. Thurner S. and Hanel R., Entropies for complex system: generalized-generalized entropies, AIP Conf. Proc., 965 (2007) 68.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Hanel R. and Thurner S., Generalized Boltzmann factors and the maximum entropy principle: entropies for complex systems, Physica A, 380 (2007) 109.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Esposito M., Lindenberg K. and Van den Broeck C., Entropy production as correlation between system and reservoir, New J. Phys., 12 (2010) 013013.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Lieb E. H. and Yngvason J., The entropy concept for non-equilibrium states, Proc. Roy. Soc. A, 469 (2013) 20130408.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Martyushev L. M., Entropy and entropy production: Old misconceptions and new breakthroughs, Entropy, 15 (2013) 1152.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Thurner S., Corominas-Murtra B. and Hanel R., Three faces of entropy for complex systems: Information, thermodynamics, and the maximum entropy principle, Phys. Rev. E, 96 (2017) 032124.

    Article  ADS  MathSciNet  Google Scholar 

  61. Altaner B., Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics, J. Phys. A: Math. Theor., 50 (2017) 454001.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Keller J. B., Extremum principles for irreversible processes, J. Math. Phys., 11 (1970) 2919.

    Article  ADS  MathSciNet  Google Scholar 

  63. Gzyl H., The Method of Maximum Entropy (World Scientific, Singapore) 1995.

    Book  MATH  Google Scholar 

  64. Ziegler H. and Wehrli C., On a principle of maximal rate of entropy production, J. Non-Equilib. Thermodyn., 12 (1987) 229.

    Article  ADS  Google Scholar 

  65. Kiss E., On the validity of the principle of minimum entropy production, Periodica Polytechnica, Ser. Chem. Eng., 38, No. 3–4 (1994) 183.

    Google Scholar 

  66. Maes C., Redig F. and Van Moffaert A., On the definition of entropy production, via examples, J. Math. Phys., 41 (2000) 1528.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Stenholm S., On entropy production, Ann. Phys. (N.Y.), 323 (2008) 2892.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Moroz A., The Common Extremalities in Biology and Physics: Maximum Energy Dissipation Principle in Chemistry, Biology, Physics and Evolution (Elsevier, New York) 2011.

    Google Scholar 

  69. Martyushev L. M. and Seleznev V. D., Fluctuations, trajectory entropy, and Ziegler’s maximum entropy production, in Beyond the Second Law. Entropy Production and Non-equilibrium Systems, edited by Dewar R. C., Lineweaver C. H., Niven R. K. and Regenauer-Lieb K. (Springer, Berlin) 2014, p. 97.

    Google Scholar 

  70. Mohammad-Djafari A. and Demoment G. (Editors), Maximum Entropy and Bayesian Methods (Springer, Berlin) 2013.

    MATH  Google Scholar 

  71. Martyushev L. M. and Seleznev V. D., The restrictions of the maximum entropy production principle, Physica A, 410 (2014) 17.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Khantuleva T. A. and Shalymov D. S., Entropy changes in a thermodynamic process under potential gradients, Philos. Trans. R. Soc. A, 375 (2017) 20160220.

    Article  ADS  MATH  Google Scholar 

  73. Lieb E. H. and Yngvason J., The physics and mathematics of the second law of thermodynamics, Phys. Rep., 310 (1999) 1.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Marsland R., Brown H. R. and Valente G., Time and irreversibility in axiomatic thermodynamics, Am. J. Phys., 83 (2015) 628.

    Article  ADS  Google Scholar 

  75. Antoniou I. E., Caratheodory and the foundations of thermodynamics and statistical physics, Found. Phys., 32 (2002) 627.

    Article  MathSciNet  Google Scholar 

  76. Boyling J. B., Caratheodory’s principle and existence of global integrating factors, Commun. Math. Phys., 10 (1968) 52.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Boyling J. B., An axiomatic approach to classical thermodynamics, Proc. Roy. Soc. A, 329 (1972) 35.

    ADS  MathSciNet  Google Scholar 

  78. Redlich O., Fundamental thermodynamics since Caratheodory, Rev. Mod. Phys., 40 (1968) 556.

    Article  ADS  Google Scholar 

  79. Maes C., Nonequilibrium entropies, Phys. Scr., 86 (2012) 058509.

    Article  MATH  Google Scholar 

  80. Landsberg P. T. (Editor), The Enigma of Time (Adam Hilger Publ., Bristol) 1984.

    Google Scholar 

  81. Coveney P. and Highfield R., The Arrow of Time (Harper-Collins, London) 1991.

    Book  Google Scholar 

  82. Mackey M. C., Time’s Arrow: The Origin of Thermodynamic Behavior (Springer, Berlin) 1992.

    Google Scholar 

  83. Lebowitz J. L. Boltzman’s entropy and time’s arrow, Phys. Today, 46(7) (1993) 32.

    Article  Google Scholar 

  84. Halliwell J. J., Perez-Mercador J. and Zurek W. H. (Editors), Physical Origins of Time Asymmetry (Cambridge University Press, Cambridge) 1994.

    Google Scholar 

  85. Price H., Time’s Arrow and Archimedes’ Point (Oxford University Press, Oxford) 1996.

    Google Scholar 

  86. Schulman L., Time’s Arrow and Quantum Measurement (Cambridge University Press, Cambridge) 1997.

    Book  Google Scholar 

  87. Petrosky T. and Prigogine I., Thermodynamic limit, Hilbert space and breaking of time symmetry, Chaos, Solitons Fractals, 11 (2000) 373.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. Elze H.-T. (Editor), Decoherence and Entropy in Complex Systems (Springer, Berlin) 2004.

    MATH  Google Scholar 

  89. Czapek V. and Sheehan D. (Editors), Challenges to the Second Law of Thermodynamics (Springer, Berlin) 2005.

    Google Scholar 

  90. Sheehan D. P., Retrocausation and the thermodynamic arrow of time, AIP Conf. Proc. 863 (2006) 89.

    Article  ADS  Google Scholar 

  91. Zeh H. D., The Physical Basis of The Direction of Time, 5th edition (Springer, New York) 2007.

    MATH  Google Scholar 

  92. Mersini-Houghton L. and Vaas R. (Editors), The Arrows of Time: A Debate in Cosmology (Springer, Berlin) 2012.

    MATH  Google Scholar 

  93. Albeverio S. and Blanchard P. (Editors), Direction of Time (Springer, Berlin) 2014.

    Google Scholar 

  94. Tuisku P., Pernu T. K. and Annila A., In the light of time, Proc. Roy. Soc. A, 465 (2009) 1173.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. Haddad W. M., Temporal asymmetry, entropic irreversibility, and finite-time thermodynamics: from Parmenides-Einstein time-reversal symmetry to the Heraclitan entropic arrow of time, Entropy, 14 (2012) 407.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Ford I. J., Measures of thermodynamic irreversibility in deterministic and stochastic dynamics, New J. Phys., 17 (2015) 075017.

    Article  ADS  Google Scholar 

  97. Penrose R., On the second law of thermodynamics, J. Stat. Phys., 77 (1994) 217.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. Zwanzig R., Nonequilibrium Statistical Mechanics (Oxford University Press, Oxford) 2001.

    MATH  Google Scholar 

  99. Gallavotti G., Nonequilibrium and Irreversibility (Springer, Berlin) 2014.

    Book  MATH  Google Scholar 

  100. Benatti F. and Floreanini R. (Editors), Irreversible Quantum Dynamics (Springer, Berlin) 2014.

    Google Scholar 

  101. Hawking S., The no boundary condition and the arrow of time, in Physical Origins of Time Asymmetry, edited by Halliwell J. J., Perez-Mercador J. and Zurek W. H. (Cambridge University Press, Cambridge) 1994, p. 346.

    Google Scholar 

  102. Varotsos P. A., Sarlis N. V., Tanaka H. K. and Skordas E. S., Some properties of the entropy in the natural time, Phys. Rev. E, 71 (2005) 032102.

    Article  ADS  Google Scholar 

  103. Varotsos P. A., Sarlis N. V. and Skordas E. S., Natural Time Analysis: The New View of Time (Springer, Berlin) 2011.

    Book  Google Scholar 

  104. Roduner E. and Radhakrishnan S. G., In command of non-equilibrium, Chem Soc. Rev., 45 (2016) 2768.

    Article  Google Scholar 

  105. Lucia U., Macroscopic irreversibility and microscopic paradox: A Constructal law analysis of atoms as open systems, Sci. Rep., 6 (2016) 35796.

    Article  ADS  Google Scholar 

  106. Bejan A. and Lorente S., The constructal law of design and evolution in nature, Philos. Trans. R. Soc. London, Ser. B Biol. Sci., 365 (2010) 1335.

    Article  Google Scholar 

  107. Bejan A. and Lorente S., The constructal law and the evolution of design in nature, Phys. Life Rev., 8 (2011) 309.

    Google Scholar 

  108. Bejan A. and Lorente S., Constructal law of design and evolution: Physics, biology, technology, and society, J. Appl. Phys., 113 (2013) 151301.

    Article  ADS  Google Scholar 

  109. Bejan A., Maxwell’s demons everywhere: evolving design as the arrow of time, Sci. Rep., 10 (2014) 4017.

    Google Scholar 

  110. Bejan A. and Errera M. R., Complexity, organization, evolution, and constructal law, J. Appl. Phys., 119 (2016) 074901.

    Article  ADS  Google Scholar 

  111. Schuster P., “Less Is More” and the Art of Modeling Complex Phenomena, Complexity, 11 (2005) 11.

    Article  Google Scholar 

  112. Crofts A. R., Life, Information, Entropy, and Time: Vehicles for Semantic Inheritance, Complexity, 13 (2007) 14.

    Article  ADS  Google Scholar 

  113. Basak T., The law of life: The bridge between physics and biology. Comment on “The constructal law and the evolution of design in nature” by A. Bejan and S. Lorente, Phys. Life Rev., 8 (2011) 249.

    Article  ADS  Google Scholar 

  114. Reis A. H., Design in nature, and the laws of physics. Comment on “The constructal law and the evolution of design in nature” by A. Bejan and S. Lorente, Phys. Life Rev., 8 (2011) 255.

    Article  ADS  Google Scholar 

  115. Liqiu Wang, Universality of design and its evolution. Comment on “The constructal law and the evolution of design in nature” by A. Bejan and S. Lorente, Phys. Life Rev., 8 (2011) 257.

    Article  ADS  Google Scholar 

  116. Lorenzini G. and Biserni C., The constructal law makes biology and economics be like physics. Comment on “The constructal law and the evolution of design in nature” by A. Bejan and S. Lorente, Phys. Life Rev., 8 (2011) 259.

    Article  ADS  Google Scholar 

  117. Bejan A. and Lorente S., The constructal law makes biology and economics be like physics. Reply to comments on “The constructal law and the evolution of design in nature”, Phys. Life Rev., 8 (2011) 261.

    Article  ADS  Google Scholar 

  118. Leff H. S., Entropy, its language, and interpretation, Found. Phys., 37 (2007) 1744.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. Landsberg P. T., Thermodynamics and Statistical Mechanics (Dover Publ., New York) 1990.

    Google Scholar 

  120. Callen H. B., Thermodynamics and an Introduction to Thermostatistics, 2nd edition (John Wiley and Sons, New York) 1985.

    MATH  Google Scholar 

  121. Ochs W., A unique characterization of the generalized Boltzmann-Gibbs-Shannon entropy, Phys. Lett. A, 54 (1975) 189.

    Article  ADS  MathSciNet  Google Scholar 

  122. Wehrl A., General properties of entropy, Rev. Mod. Phys., 50 (1978) 221.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. Tsallis C., Introduction to Nonextensive Statistical Mechanics. Approaching a Complex World (Springer, Berlin) 2009.

    MATH  Google Scholar 

  124. Breymann W., Tel T. and Vollmer J., Entropy production for open dynamical systems, Phys. Rev. Lett., 77 (1996) 2945.

    Article  ADS  Google Scholar 

  125. Adib A., Does the Boltzmann principle need a dynamical correction?, J. Stat. Phys., 117 (2004) 581.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  126. Khinchin A. Ya., Mathematical Foundations of Statistical Mechanics (Dover Publ., New York) 1949.

    MATH  Google Scholar 

  127. Dunning-Davies J., On the derivation of d′Q = T dS, J. Phys. A: Math. Gen., 16 (1983) 3377.

    Article  ADS  MathSciNet  Google Scholar 

  128. Addison S. R. and Gray J. E., Is extensivity a fundamental property of entropy?, J. Phys. A: Math. Gen., 34 (2001) 7733.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  129. Mannaerts S. H., Extensive quantities in thermodynamics, Eur. J. Phys., 35 (2014) 7733.

    Article  Google Scholar 

  130. Diebner H. H. and Rossler O. E., A deterministic entropy to monitor the evolution of microscopically simulated far-from-equilibrium structures, Chaos, Solitons Fractals, 19 (2004) 699.

    Article  ADS  MATH  Google Scholar 

  131. Vilar J. M. G. and Rubio J. M., Commmunication: System-size scaling of Boltzmann and alternate Gibbs entropies, J. Chem. Phys., 140 (2014) 201101.

    Article  ADS  Google Scholar 

  132. Eu Byung Chan, Relative Boltzmann entropy, evolution equations for fluctuations of thermodynamic intensive variables, and a statistical mechanical representation of the zeroth law of thermodynamics, J. Chem. Phys., 125 (2006) 064110.

    Article  ADS  Google Scholar 

  133. Sinha Dhiraj, Entropy changes in a thermodynamic process under potential gradients, Physica A, 416 (2014) 676.

    Article  ADS  Google Scholar 

  134. Mackey M. C. and Tyran-Kaminska M., Temporal behavior of the conditional and Gibbs’ entropies, J. Stat. Phys., 124 (2006) 1443.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  135. Beck C., Generalized information and entropy measures in physics, Contemp. Phys., 50, No. 4 (2009) 495.

    Article  ADS  Google Scholar 

  136. Naudts J., Generalized Thermostatistics (Springer, Berlin) 2011.

    Book  MATH  Google Scholar 

  137. Perez-Madrid A., Gibbs entropy and irreversibility, Physica A, 339 (2004) 339.

    Article  ADS  MathSciNet  Google Scholar 

  138. Perez-Madrid A., Generalized Gibbs entropy, irreversibility and stationary states, Int. J. Thermodyn., 8 (2005) 159.

    Google Scholar 

  139. Perez-Madrid A., Nonequilibrium entropy. Characterization of stationary state, Energy, 32 (2007) 301.

    Article  Google Scholar 

  140. Lieb E. H. and Yngvason J., Entropy meters and the entropy of non-extensive systems, Proc. Roy. Soc. A, 470 (2014) 20140192.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  141. DeW. Van Siclen C., Information entropy of complex structures, Phys. Rev. E, 56 (1997) 5211.

    Article  ADS  Google Scholar 

  142. Johnson O. T. and Suhov Y. M., Entropy and random vectors, J. Stat. Phys., 104 (2001) 147.

    Article  MathSciNet  MATH  Google Scholar 

  143. Toulias T. L. and Kitsos C. P., Generalizations of entropy and information measures, in Computation, Cryptography, and Network Security, edited by Daras N. J. and Rassias M. Th. (Springer Intern. Publ., Switzerland) 2015, p. 493.

    Chapter  MATH  Google Scholar 

  144. Benioff P. A., Information theory in quantum statistical mechanics, Phys. Lett., 14 (1965) 196.

    Article  ADS  MathSciNet  Google Scholar 

  145. Balian R., Information in statistical physics, Stud. Hist. Philos. Mod. Phys., 36 (2005) 323.

    Article  MathSciNet  MATH  Google Scholar 

  146. Kozlov V. V. and Smolyanov O. G., Information entropy in problems of classical and quantum statistical mechanics, Dokl. Math., 74 (2006) 910.

    Article  MATH  Google Scholar 

  147. Lesne A., Shannon entropy: a rigorous notion at the crossroads between probability, information theory, dynamical systems and statistical physics, Math. Struct. Comput. Sci., 24, Special Issue 03 (2014) e240311.

    Article  MathSciNet  MATH  Google Scholar 

  148. Hobson A., A new theorem of information theory, J. Stat. Phys., 1 (1969) 383.

    Article  ADS  MathSciNet  Google Scholar 

  149. Skagerstam B.-S. K., On the notion of entropy and information, J. Stat. Phys., 12 (1975) 449.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  150. Petz D., Entropy, von Neumann and the von Neumann entropy, in Vienna Circle Inst. Yearbook, 8 (2001) 83.

    MathSciNet  Google Scholar 

  151. Wheeler J. A. and Zurek W. H. (Editors), Quantum Theory and Measurement (Princeton University Press, Princeton) 1983.

    Google Scholar 

  152. Balian R., From Microphysics to Macrophysics. Methods ad Applications of Statistical Physics, Vol. 1 (Springer, Berlin) 2007.

    MATH  Google Scholar 

  153. Kuzemsky A. L., Variational principle of Bogoliubov and generalized mean fields in many-particle interacting systems, Int. J. Mod. Phys. B, 29 (2015) 1530010.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  154. Frieden B. R., Physics from Fisher Information: A Unification (Cambridge University Press, Cambridge) 1998.

    Book  MATH  Google Scholar 

  155. Kullback S., Information Theory and Statistics (Dover, New York) 1968.

    MATH  Google Scholar 

  156. Hobson A. and Cheng Bin-Kang, A comparison of the Shannon and Kullback information measures, J. Stat. Phys., 7 (1973) 301.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  157. Kolmogorov A. N., Three approaches to the quantitative definition of information, Probl. Inform. Transm., 1 (1965) 1.

    Google Scholar 

  158. Kolmogorov A. N., Logical basis for information theory and probability theory, IEEE Trans. Inf. Theory, 14, No. 5 (1968) 662.

    Article  MathSciNet  MATH  Google Scholar 

  159. Jauch J. M. and Baron J. G., Entropy, information and Szilard paradox, Helv. Phys. Acta, 45 (1972) 220.

    MathSciNet  Google Scholar 

  160. Sharma B. D. and Mittal D. P., New nonadditive measures of entropy for discrete probability distributions, J. Math. Sci., 10 (1975) 28.

    MathSciNet  Google Scholar 

  161. Renyi A., On measures of entropy and information, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1: Contributions to the Theory of Statistics (University of California Press, Berkeley, CA) 1961, p. 547.

    Google Scholar 

  162. Abe S., A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics, Phys. Lett. A, 224 (1997) 326.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  163. Abe S., Macroscopic thermodynamics based on composable nonextensive entropies, Physica A, 305 (2002) 62.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  164. Abe S., Generalized entropy optimized by a given arbitrary distribution, J. Phys. A: Math. Gen. A, 36 (2003) 8733.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  165. Kaniadakis G., Statistical mechanics in the context of special relativity, Phys. Rev. E, 66 (2002) 056125.

    Article  ADS  MathSciNet  Google Scholar 

  166. Kaniadakis G., Lissia M. and Scarfone A. M., Two-parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statistical mechanics, Phys. Rev. E, 71 (2005) 046128.

    Article  ADS  MathSciNet  Google Scholar 

  167. Kaniadakis G., Maximum entropy principle and power-law tailed distributions, Eur. Phys. J. B, 70 (2009) 3.

    Article  ADS  MATH  Google Scholar 

  168. Kaniadakis G., Theoretical Foundations and mathematical formalism of the power-law tailed statistical distributions, Entropy, 15 (2013) 3983.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  169. Edwards S. F., New kinds of entropy, J. Stat. Phys., 116 (2004) 29.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  170. Bowles R. K. and Ashwin S. S., Edwards entropy and compactivity in a model of granular matter, Phys. Rev. E, 83 (2011) 031302.

    Article  ADS  Google Scholar 

  171. Fisher R. A., On the mathematical foundation of theoretical statistics, Philos. Trans. R. Soc. London, Ser. A, 222 (1922) 309.

    Article  ADS  MATH  Google Scholar 

  172. Hand D. J., From evidence to understanding: a commentary on Fisher (1922) “On the mathematical foundations of theoretical statistics”, Philos. Trans. R. Soc. London, Ser. A, 373 (2015) 20140252.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  173. Jeffreys H., An invariant form for the prior probability in estimation problems, Proc. Roy. Soc. A, 186 (1946) 453.

    ADS  MathSciNet  MATH  Google Scholar 

  174. Plastino A. and Plastino A. R., Tsallis entropy and Jaynes’ information theory formalism, Braz. J. Phys., 29 (1999) 50.

    Article  ADS  Google Scholar 

  175. Kolmogorov A. N., A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces, Dokl. Akad. Nauk SSSR, 119 (1958) 861.

    MathSciNet  MATH  Google Scholar 

  176. Gelfand I. M., Kolmogorov A. N. and Yaglom A. M., Concerning the general definition of the amount of information, Dokl. Akad. Nauk SSSR, 111 (1956) 4.

    Google Scholar 

  177. Cover T., Gacs P. and Gray M., Kolmogorov’s contributions to information theory and algorithmic complexity, Ann. Probab., 17 (1989) 840.

    Article  MathSciNet  MATH  Google Scholar 

  178. Teixeira A., Matos A., Souto A. and Antunes L., Entropy measures vs. Kolmogorov complexity, Entropy, 13 (2011) 595.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  179. Deng Yong, Deng entropy, Chaos, Solitons Fractals, 91 (2016) 549.

    Article  ADS  MATH  Google Scholar 

  180. Abellan J., Analyzing properties of Deng entropy in the theory of evidence, Chaos, Solitons Fractals, 95 (2017) 195.

    Article  ADS  MATH  Google Scholar 

  181. Baranau V., Zhao S., Scheel M., Tallarek U. and Schroter M., Upper bound on the Edwards entropy in frictional monodisperse hard-sphere packings, Soft Matter, 12 (2016) 3991.

    Article  ADS  Google Scholar 

  182. Martiniani S., Schrenk K. J., Ramola K., Chakraborty B. and Frenkel D., Numerical test of the Edwards conjecture shows that all packings are equally probable at jamming, Nature Phys., 13 (2017) 848.

    Article  ADS  Google Scholar 

  183. Baule A., Morone F., Herrmann H. J. and Makse H. A., Edwards statistical mechanics for jammed granular matter, Rev. Mod. Phys., 90 (2018) 015006.

    Article  ADS  MathSciNet  Google Scholar 

  184. Denbigh K. G., The Thermodynamics of the Steady State (Methuen Publ., New York) 1958.

    Google Scholar 

  185. Kreuzer H. J., Nonequilibrium Thermodynamics and its Statistical Foundations (Clarendon Press, Oxford) 1981.

    Google Scholar 

  186. Keizer J., Statistical Thermodynamics of Nonequilibrium Processes (Springer, Berlin) 1987.

    Book  Google Scholar 

  187. Gaveau B., Moreau M. and Schulman L. S., Generalized Clausius relation and power dissipation in nonequilibrium stochastic systems, Phys. Rev. E, 79 (2009) 010102(R).

    Article  ADS  Google Scholar 

  188. Haslach Jr. H. W., Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure (Springer, Berlin) 2011.

    Book  MATH  Google Scholar 

  189. Cimmelli V. A., Jou D., Ruggeri T. and Van P., Entropy principle and recent results in non-equilibrium theories, Entropy, 16 (2014) 1756.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  190. Onsager L., Reciprocal relations in irreversible processes. I, Phys. Rev., 37 (1931) 405.

    Article  ADS  MATH  Google Scholar 

  191. Onsager L., Reciprocal relations in irreversible processes. II, Phys. Rev., 38 (1931) 2265.

    Article  ADS  MATH  Google Scholar 

  192. Onsager L. and Machlup S., Fluctuations and irreversible processes, Phys. Rev., 91 (1953) 1505.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  193. Onsager L. and Machlup S., Fluctuations and irreversible processes. II. Systems with kinetic energy, Phys. Rev., 91 (1953) 1512.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  194. Miller D. G., The origins of Onsager’s key role in the development of linear irreversible thermodynamics, J. Stat. Phys., 78 (1995) 563.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  195. Kuzemsky A. L., Electronic transport in metallic systems and generalized kinetic equations, Int. J. Mod. Phys. B, 25 (2011) 3071.

    Article  ADS  MATH  Google Scholar 

  196. Boneto F. and Rey-Bellet L., in Encyclopedia of Mathematical Physics, edited by Francoise J.-P., Naber G. L. and Tsou S. T. (Elsevier, Amsterdam) 2006, p. 374.

  197. Tritt T. M. (Editor), Thermal Conductivity: Theory, Properties, and Applications (Kluwer Academic/Plenum Publ., New York) 2004.

    Google Scholar 

  198. Maes C., Entropy production in driven spatially extended systems. arXiv:cond-mat/0101064v1 [cond-mat.stat-mech] preprint (2001).

  199. Kubo R., Toda M. and Hashitsume N., Statistical Physics: Nonequilibrium Statistical Mechanics, Vol. 2 (Springer, Berlin) 1991.

    MATH  Google Scholar 

  200. Kawasaki K. and Gunton J. D., Theory of nonlinear transport processes: Nonlinear shear viscosity and normal stress effects, Phys. Rev. A, 8 (1973) 2048.

    Article  ADS  Google Scholar 

  201. Verhas J., On the entropy current, J. Non-Equilib. Thermodyn., 8 (1983) 201.

    Article  ADS  Google Scholar 

  202. Nyiri B., On the entropy current, J. Non-Equilib. Thermodyn., 16 (1991) 179.

    ADS  Google Scholar 

  203. Shu-Nan Li and Bing-Yang Cao, Mathematical and information-geometrical entropy for phenomenological Fourier and non-Fourier heat conduction, Phys. Rev. E, 96 (2017) 032131.

    Article  ADS  MathSciNet  Google Scholar 

  204. Van P., Weakly nonlocal irreversible thermodynamics — the Guyer-Krumhansl and the Cahn-Hilliard equations, Phys. Lett. A, 290 (2001) 88.

    Article  ADS  MATH  Google Scholar 

  205. Van P., Weakly nonlocal irreversible thermodynamics, Ann. Phys. (Leipzig), 12 (2003) 146.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  206. Van P., Weakly nonlocal non-equilibrium thermodynamics — variational principles and second law, in Applied Wave Mathematics, edited by Quak E. and Soomere T. (Springer, Berlin) 2009, p. 153.

    Chapter  Google Scholar 

  207. Bhattacharyya S., Entropy current from partition function: one example, J. High Energy Phys., 2014 (2014) 139.

    Article  Google Scholar 

  208. Duhem P. and Needham P., Commentary on the Principles of Thermodynamics by Pierre Duhem (Springer, New York) 2011.

    Google Scholar 

  209. Eckart C., The thermodynamics of irreversible processes. I. The simple fluid, Phys. Rev., 58 (1940) 267.

    Article  ADS  MATH  Google Scholar 

  210. Müller I., On the entropy inequality, Arch. Rational Mech. Anal., 26 (1967) 118.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  211. Truesdell C., Rational Thermodynamics (Springer, New York) 2012.

    MATH  Google Scholar 

  212. Maugin G. A., Clausius-Duhem Inequality, in Encyclopaedia of Mathematics, edited by Hazewinkel M., Suppl. Vol. 1 (Springer, Berlin) 1997, p. 185.

    Google Scholar 

  213. Fremond M., The Clausius-Duhem inequality, an interesting and productive inequality, in Nonsmooth Mechanics and Analysis, edited by Alart P., Maisonneuve O. and Rockafellar R. T. (Springer, Boston, MA) 2006, p. 107.

    Chapter  Google Scholar 

  214. Pelkowski J., On the Clausius-Duhem inequality and maximum entropy production in a simple radiating system, Entropy, 16 (2014) 2291.

    Article  ADS  MathSciNet  Google Scholar 

  215. Compagner A., Thermodynamics as the continuum limit of statistical mechanics, Am. J. Phys., 57 (1989) 106.

    Article  ADS  MathSciNet  Google Scholar 

  216. Ziegler H., An Introduction to Thermomechanics (North-Holland, Amsterdam) 1983.

    MATH  Google Scholar 

  217. Bertini L., De Sole A., Gabrielli D., Jona-Lasinio G. and Landim C., Quantitative analysis of the Clausius inequality, J. Stat. Mech.: Theory Exp., 2015 (2015) 10018.

    Article  MathSciNet  Google Scholar 

  218. Kestin J., A course in thermodynamics, 2 vols. (McGraw-Hill Inc., New York) 1979.

    Google Scholar 

  219. Kestin J., A note on the relation between the hypothesis of local equilibrium and the Clausius-Duhem inequality, J. Non-Equilib. Thermodyn., 15 (1990) 193.

    Article  ADS  MATH  Google Scholar 

  220. Kestin J., Internal variables in the local-equilibrium approximation, J. Non-Equilib. Thermodyn., 18 (1993) 360.

    Article  ADS  MATH  Google Scholar 

  221. Eckmann J.-P., Pillet C.-A. and Rey-Bellet L., Entropy production in nonlinear, thermally driven Hamiltonian systems, J. Stat. Phys., 95 (1999) 305.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  222. Keizer J., On the kinetic meaning of the second law of thermodynamics, J. Chem. Phys., 64 (1976) 4466.

    Article  ADS  MathSciNet  Google Scholar 

  223. Keizer J., Fluctuations, stability, and generalized state functions at nonequilibrium steady states, J. Chem. Phys., 65 (1976) 4431.

    Article  ADS  MathSciNet  Google Scholar 

  224. Keizer J., Thermodynamics at nonequilibrium steady states, J. Chem. Phys., 69 (1978) 2609.

    Article  ADS  MathSciNet  Google Scholar 

  225. Benofy S. J. and Quay P. M., The thermodynamics of systems in a steady state, J. Chem. Phys., 78 (1983) 3177.

    ADS  MathSciNet  Google Scholar 

  226. Keizer J., Heat, work, and the thermodynamic temperature at nonequilibrium steady states, J. Chem. Phys., 82 (1985) 2751.

    Article  ADS  MathSciNet  Google Scholar 

  227. Oono Y. and Paniconi M., Steady state thermodynamics, Prog. Theor. Phys. Suppl., 130 (1998) 29.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  228. Schlögl F., A characteristic class of quantities in nonequilibrium thermodynamics and a statistical justification of the local equilibrium approximation, Z. Phys. B, 20 (1975) 177.

    Article  ADS  Google Scholar 

  229. Hafskjold B. and Ratkje S. K., Criteria for local equilibrium in a system with transport of heat and mass, J. Stat. Phys., 78 (1995) 463.

    Article  ADS  MATH  Google Scholar 

  230. Zhang Xue-Juan, Qian Hong and Qian Min, Stochastic theory of nonequilibrium steady states and its applications. Part I, Phys. Rep., 510 (2012) 1.

    Article  ADS  MathSciNet  Google Scholar 

  231. Auletta G., Rondoni L. and Vulpiani A., On the relevance of the maximum entropy principle in non-equilibrium statistical mechanics, Eur. J. Phys., 226 (2017) 2327.

    Google Scholar 

  232. Denbigh K. G. and Denbigh J. S., Entropy in Relation to Incomplete Knowledge (Cambridge University Press, Cambridge) 1985.

    Google Scholar 

  233. Bruers S. A., A discussion on maximum entropy production and information theory, J. Phys. A: Math. Theor., 40 (2007) 7441.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  234. Rey-Bellet L., Open classical systems, in Quantum Open Systems II. The Markovian approach, edited by Attal S., Joye A. and Pillet C.-A. (Springer, Berlin) 2006, p. 41.

    Chapter  MATH  Google Scholar 

  235. Velasco R. M., Garcia-Colin L. S. and Uribe F. J., Entropy production: its role in nonequilibrium thermodynamics, Entropy, 13 (2011) 82.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  236. Van P. and Muschik W., Structure of variational principles in nonequilibrium thermodynamics, Phys. Rev. E, 5 (1995) 3584.

    Article  ADS  Google Scholar 

  237. Prigogine I., Introduction to Thermodynamics of Irreversible Processes, 2nd edition (Interscience Publ., New York) 1967.

    MATH  Google Scholar 

  238. Klein M. J. and Meijer P. H. E., Principle of minimum entropy production, Phys. Rev., 96 (1954) 250.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  239. Kuzemsky A. L., Generalized kinetic and evolution equations in the approach of the nonequilibrium statistical operator, Int. J. Mod. Phys. B, 19 (2005) 1029.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  240. de Vega I. and Alonso D., Dynamics of non-Markovian open quantum systems, Rev. Mod. Phys., 89 (2017) 015001.

    Article  ADS  MathSciNet  Google Scholar 

  241. Schnakenberg C., Network theory of microscopic and macroscopic behavior of master equation systems, Rev. Mod. Phys., 48 (1976) 571.

    Article  ADS  MathSciNet  Google Scholar 

  242. Jakob M. and Stenholm S., Effects of a thermal reservoir on variational functions in open systems, Phys. Rev. A, 70 (2004) 012104.

    Article  ADS  Google Scholar 

  243. Schaller G., Open Quantum Systems Far from Equilibrium (Springer, Berlin) 2014.

    Book  MATH  Google Scholar 

  244. Alicki R., The Markov master equation and the Fermi golden rule, Int. J. Theor. Phys., 16 (1977) 351.

    Article  MATH  Google Scholar 

  245. Lindblad G., On the generators of quantum dynamical semigroups, Commun. Math. Phys., 48 (1976) 119.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  246. Lindblad G., Non-Equilibrium Entropy and Irreversibility (Springer, Berlin) 2002.

    MATH  Google Scholar 

  247. Alicki R., Quantum Dynamical Semigroups and Applications (Springer, Berlin) 1987.

    MATH  Google Scholar 

  248. Schwegler H. and Mackey M. C., A simple model for the approach of entropy to thermodynamic equilibrium, J. Phys. A: Math. Gen., 27 (1994) 1939.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  249. Ishizaki A. and Tanimura Y., Nonperturbative non-Markovian quantum master equation: validity and limitation to calculate nonlinear response functions, Chem. Phys., 347 (2008) 185.

    Article  Google Scholar 

  250. Callen H. B., Principle of minimum entropy production, Phys. Rev., 105 (1957) 360.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  251. Glansdorff P. and Prigogine I., Thermodynamic theory of structure, stability, and fluctuations (John Wiley and Sons, London) 1971.

    MATH  Google Scholar 

  252. Keizer J. and Fox R. F., Qualms regarding the range of validity of the Glansdorff-Prigogine criterion for stability of non-equilibrium states, Proc. Natl. Acad. Sci. U.S.A., 71 (1974) 192.

    Article  ADS  Google Scholar 

  253. Glansdorff P., Nicolis G. and Prigogine I., The thermodynamic stability theory of non-equilibrium states, Proc. Natl. Acad. Sci. U.S.A., 71 (1974) 197.

    Article  ADS  Google Scholar 

  254. Luo Jiu-li, Van den Broeck C. and Nicolis G., Stability criteria and fluctuations around nonequilibrium states, Z. Phys. B, 56 (1984) 165.

    Article  ADS  MathSciNet  Google Scholar 

  255. Di Vita A., Maximum or minimum entropy production? How to select a necessary criterion of stability for a dissipative fluid or plasma, Phys. Rev. E, 81 (2010) 041137.

    Article  ADS  Google Scholar 

  256. Sonnino G., Tlidi M. and Evslin J., Comment on “Maximum or minimum entropy production? How to select a necessary criterion of stability for a dissipative fluid or plasma”, Phys. Rev. E, 86 (2012) 043101.

    Article  ADS  Google Scholar 

  257. Maes C. and Netocny K., Revisiting the Glansdorff-Prigogine criterion for stability within irreversible thermodynamics, J. Stat. Phys., 159 (2015) 1286.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  258. Glansdorff P., Irreversibility in macroscopic physics: From Carnot cycle to dissipative structures, Found. Phys., 17 (1987) 653.

    Article  ADS  MathSciNet  Google Scholar 

  259. Gyarmati I., Non-equilibrium thermodynamics: Field theory and variational principles (Springer, Berlin) 1970.

    Book  Google Scholar 

  260. Paltridge G. W., Climate and thermodynamic systems of maximum dissipation, Nature, 279 (1979) 630.

    Article  ADS  Google Scholar 

  261. Paltridge G. W., A story and a recommendation about the principle of maximum entropy production, Entropy, 11 (2009) 945.

    Article  ADS  Google Scholar 

  262. Virgo N. and Ikegami T., Possible dynamical explanations for Paltridge’s principle of maximum entropy production, AIP Conf. Proc., 1636, issue 1 (2014) 172.

    Article  ADS  Google Scholar 

  263. Zupanovic P., Kuic D., Losic Z. B., Petrov D., Juretic D. and Brumen M., The maximum entropy production principle and linear irreversible processes, Entropy, 12 (2010) 1004.

    ADS  MathSciNet  MATH  Google Scholar 

  264. Zivi S. M., Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production, J. Heat Transfer, 86 (1964) 247.

    Article  Google Scholar 

  265. Ziman J. M., The general variational principle of transport theory, Can. J. Phys., 34 (1956) 1256.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  266. Jones W., Principles of minimum entropy production in transport theory, J. Phys. C: Solid State Phys., 15 (1982) 6597.

    Article  ADS  Google Scholar 

  267. Niven R. K., Steady state of a dissipative flow-controlled system and the maximum entropy, Phys. Rev. E, 80 (2009) 021113.

    Article  ADS  Google Scholar 

  268. Jaynes E. T., The Minimum Entropy Production Principle, Annu. Rev. Phys. Chem., 31 (1980) 579.

    Article  ADS  Google Scholar 

  269. Jaynes E. T., Macroscopic prediction, in Complex systems — operational approaches in neurobiology, edited by Haken H. (Springer, Berlin) 1985, p. 254.

    Chapter  Google Scholar 

  270. Presse S., Ghosh K., Lee J. and Dill K. A., Principle of maximum entropy and maximum caliber in statistical physics, Rev. Mod. Phys., 85 (2013) 1115.

    Article  ADS  Google Scholar 

  271. Hazoglou M. J., Walther V., Dixit P. D. and Dill K. A., Maximum caliber is a general variational principle for nonequilibrium statistical mechanics, J. Chem. Phys., 143 (2015) 051104.

    Article  ADS  Google Scholar 

  272. Callens I., De Roeck W., Jacobs T., Maes C. and Netocny K., Quantum entropy production as a measure of irreversibility, Physica D, 187 (2004) 383.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  273. Maes C., Frenetic bounds on the entropy production, Phys. Rev. Lett., 119 (2017) 160601.

    Article  ADS  Google Scholar 

  274. Suzuki M., Irreversibility and entropy production in transport phenomena, III: Principle of minimum integrated entropy production including nonlinear responses, Physica A, 392 (2013) 314.

    Article  ADS  MathSciNet  Google Scholar 

  275. Komatsu T. S. and Nakagawa N., Expression for the stationary distribution in nonequilibrium steady states, Phys. Rev. Lett., 100 (2008) 030601.

    Article  ADS  Google Scholar 

  276. Maes C. and Netocny K., Time-reversal and entropy, J. Stat. Phys., 110 (2003) 269.

    Article  MathSciNet  MATH  Google Scholar 

  277. Ruelle D., Entropy production in nonequilibrium statistical mechanics, Commun. Math. Phys., 189 (1997) 360.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  278. Parrondo J. M. R., Van den Broeck C. and Kawai R., Entropy production and the arrow of time, New J. Phys., 11 (2009) 073008.

    Article  ADS  Google Scholar 

  279. Gomez-Marin A., Parrondo J. M. R. and Van den Broeck C., The “footprints” of irreversibility, Europhys. Lett., 82 (2008) 50002.

    Article  ADS  Google Scholar 

  280. Brody D. and Meister B., An upper bound for entropy production, Phys. Lett. A, 204 (1995) 93.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  281. Cleuren B., Van den Broeck C. and Kawai R., Fluctuation and dissipation of work in a Joule experiment, Phys. Rev. Lett., 96 (2006) 050601.

    Article  ADS  Google Scholar 

  282. Kawai R., Parrondo J. M. R. and Van den Broeck C., Dissipation: The phase-space perspective, Phys. Rev. Lett., 98 (2007) 080602.

    Article  ADS  Google Scholar 

  283. Kuzemsky A. L., Generalized Van Hove formula for scattering of neutrons by the nonequilibrium statistical medium, Int. J. Mod. Phys. B, 26 (2012) 1250092.

    Article  ADS  MATH  Google Scholar 

  284. Suzuki M., Irreversibility and entropy production in transport phenomena, Physica A, 390 (2011) 1904.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  285. Suzuki M., First-principle derivation of entropy production in transport phenomena, J. Phys: Conf. Ser., 297 (2011) 012019.

    Google Scholar 

  286. Suzuki M., Irreversibility and entropy production in transport phenomena, II: Statistical-mechanical theory on steady states including thermal disturbance and energy supply, Physica A, 391 (2012) 1074.

    Article  ADS  MathSciNet  Google Scholar 

  287. Suzuki M., Macroscopic order formation, inflation mechanism and entropy change, Prog. Theor. Phys. Suppl., 195 (2012) 114.

    Article  ADS  MATH  Google Scholar 

  288. Suzuki M., Irreversibility and entropy production in transport phenomena, IV: Symmetry, integrated intermediate processes and separated variational principles for multi-currents, Physica A, 392 (2013) 4279.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  289. Kuzemsky A. L., Nonequilibrium statistical operator method and generalized kinetic equations, Theor. Math. Phys., 194 (2018) 30.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kuzemsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzemsky, A.L. Temporal evolution, directionality of time and irreversibility. Riv. Nuovo Cim. 41, 513–574 (2018). https://doi.org/10.1393/ncr/i2018-10152-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2018-10152-0

Navigation