Skip to main content
Log in

Kinetic Propagation of Charged Particles in a Magnetic Field at Various Directions of Their Injection

  • SPACE PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract—The propagation of high-energy charged particles in the magnetic field, which is a superposition of the mean homogeneous magnetic field and magnetic inhomogenieties of various scales, is considered on the basis of the Fokker-Planck kinetic equation. The analytical expression for the cosmic ray distribution function corresponding to the instantaneous particle injection in the direction perpendicular to the regular magnetic field is obtained. The solution of the kinetic equation in the small angle approximation is applied for the case of particle emission along the mean magnetic field. It is shown that the spatial-temporal cosmic ray distribution depends substantially on the direction of particle injection. The evolution of the angular distribution of solar cosmic rays is analyzed on the basis of the derived solutions of the kinetic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. B. A. Galperin, I. N. Toptygin, and A. A. Fradkin, “Scattering of particles by magnetic inhomogeneities in a strong magnetic field,” Zh. Eksp. Teor. Fiz. 60, 972 (1971).

    Google Scholar 

  2. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1: Elementary Functions (Nauka, Moscow, 1981; Gordon and Breach, New York, 1986.)

  3. I. N. Toptygin, “On time dependence of the intensity of cosmic rays on the anisotropic stage of solar flares,” Geomagn. Aeron. 12, 989 (1972).

    Google Scholar 

  4. I. N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  5. J. Beeck and G. Wibberenz, “Pitch angle distributions of solar energetic particles and the local scattering properties of the interplanetary medium,” Astrophys. J. 311, 437 (1986).

    Article  ADS  Google Scholar 

  6. J. W. Bieber, P. A. Evenson, and M. A. Pomerantz, “Focusing anisotropy of solar cosmic rays,” J. Geophys. Res.: Space Phys. 91, 8713 (1986).

    Article  ADS  Google Scholar 

  7. J. L. Cramp, M. L. Duldig, E. O. Fluckiger, J. E. Humble, M. A. Shea, and D. F. Smart, “The October 22, 1989 solar cosmic ray enhancement: An analysis of the anisotropy and spectral characteristics,” J. Geophys. Res.: Space Phys. 102, 24237–24248 (1997).

    Article  ADS  Google Scholar 

  8. H. Debrunner, E. Fluckiger, H. Gradel, J. A. Lockwood, and R. E. McGuire, “Observations related to the acceleration, injection, and interplanetary propagation of energetic particles during the solar cosmic ray event on February 16, 1984,” J. Geophys. Res.: Space Phys. 93, 7206–7216 (1988).

    Article  ADS  Google Scholar 

  9. H. Debrunner, J. A. Lockwood, and J. M. Ryan, “The solar flare event on 1990 May 24: Evidence for two separate particle acceleration,” Astrophys. J. 387, L51– L54 (1992).

    Article  ADS  Google Scholar 

  10. L. I. Dorman and M. E. Katz, “Cosmic ray kinetics in space,” Space Sci. Rev. 70, 529–575 (1977).

    Article  ADS  Google Scholar 

  11. J. A. Earl, “Diffusion of charged particles in a random magnetic field,” Astrophys. J. 180, 227 (1973).

    Article  ADS  Google Scholar 

  12. J. A. Earl, “New description of charged particle propagation in random magnetic field,” Astrophys. J. 425, 331 (1994).

    Article  ADS  Google Scholar 

  13. F. Effenberger and Y. Litvinenko, “The diffusion approximation versus the telegraph equation for modeling solar energetic particle transport with adiabatic focusing. 1. Isotropic pitch angle scattering,” Astrophys. J. 783, 15 (2014).

    Article  ADS  Google Scholar 

  14. Yu. I. Fedorov, B. A. Shakhov, and M. Stehlik, “Non-diffusive transport of cosmic rays in homogeneous regular magnetic fields,” Astron. Astrophys. 302, 623–634 (1995).

    ADS  Google Scholar 

  15. Yu. I. Fedorov and B. A. Shakhov, “Description of non-diffusive cosmic ray propagation in a homogeneous regular magnetic field,” Astron. Astrophys. 402, 805 (2003).

    Article  ADS  MATH  Google Scholar 

  16. Yu. I. Fedorov, “Intensity of cosmic rays at the initial stage of a solar flare,” Kinematics Phys. Celestial Bodies. 34, 1–12 (2018).

    Article  ADS  Google Scholar 

  17. T. J. Gombosi, J. R. Jokipii, J. Kota, et al., “The telegraph equation in charged particle transport,” Astrophys. J. 403, 377 (1993).

    Article  ADS  Google Scholar 

  18. K. Hasselmann and G. Wibberenz, “Scattering of charged particles by random electromagnetic fields,” Z. Geophys. 34, 353 (1968).

    Google Scholar 

  19. K. Hasselmann and G. Wibberenz, “A note of the parallel diffusion coefficient,” Astrophys. J. 162, 1049 (1970).

    Article  ADS  Google Scholar 

  20. J. R. Jokipii, “Cosmic ray propagation. 1. Charged particle in a random magnetic field,” Astrophys. J. 146, 480 (1966).

    Article  ADS  Google Scholar 

  21. E. Kh. Kagashvili, G. P. Zank, J. Y. Lu, and W. Droge, “Transport of energetic charged particles. 2. Small-angle scattering,” J. Plasma Phys. 70, 505–532 (2004).

    Article  ADS  Google Scholar 

  22. J. Kota, “Coherent pulses in the diffusive transport of charged particles,” Astrophys. J. 427, 1035–1080 (1994).

    Article  ADS  Google Scholar 

  23. Yu. E. Litvinenko and P. L. Noble, “Comparison of the telegraph and hyperdiffusion approximations in cosmic ray transport,” Phys. Plasmas. 23, 062901 (2016).

    Article  ADS  Google Scholar 

  24. M. A. Malkov and R. Z. Sagdeev, “Cosmic ray transport with magnetic focusing and the "telegraph” model,” Astrophys. J. 808, 157 (2015).

    Article  ADS  Google Scholar 

  25. M. A. Malkov, “Exact solution of the Fokker–Planck equation for isotropic scattering,” Phys. Rev. D. 95, 023007 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  26. K. G. McCracken, H. Moraal, and P. H. Stoker, “Investigation of the multi-component structure of the 20 January 2005 cosmic ray ground level enhancement,” J. Geophys. Res.: Space Phys. 113, A12101 (2008).

    Article  ADS  Google Scholar 

  27. L. I. Miroshnichenko, E. V. Vashenyuk, and J. A. Perez-Peraza, “Solar cosmic rays: 70 years of ground-based observations,” Geomagn. Aeron. 53, 541– 560 (2013).

    Article  ADS  Google Scholar 

  28. H. Moraal and K. G. McCracken, “The time structure of ground level enhancement in solar cycle 23,” Space Sci. Rev. 171, 85–95 (2012).

    Article  ADS  Google Scholar 

  29. R. J. Nemzek, A. D. Belian, T. E. Cayton, and G. D. Reaves, “The October 22, 1989 solar cosmic ray event measured at geosynchronous orbit,” J. Geophys. Res.: Space Phys. 99, 4221–4226 (1994).

    Article  ADS  Google Scholar 

  30. B. A. Shakhov and M. Stehlik, “The Fokker–Planck equation in the second order pitch angle approximation and its exact solution,” J. Quant. Spectr. Radiat. Transfer 78, 31–39 (2003).

    Article  ADS  Google Scholar 

  31. M. A. Shea and D. F. Smart, “Possible evidence for a rigidity-dependent release of relativistic protons from the solar corona,” Space Sci. Rev. 32, 251–271 (1982).

    ADS  Google Scholar 

  32. M. A. Shea and D. F. Smart, “Dual acceleration and/or release of relativistic solar cosmic rays,” in Proc. 25th Int. Cosmic Ray Conf., Durban, South Africa, July 30 – Aug. 6, 1997 (Potchefstroomse Univ., Potchefstroomse, 1997), Vol. 1, pp. 129–132.

  33. E. V. Vashenyuk, Yu. V. Balabin, J. Perez-Peraza, A. Gallegos-Cruz, and L. I. Miroshnichenko, “Some features of the sources of relativistic particles at the Sun in the solar cycles 21–23,” Adv. Space Res. 38, 411–417 (2006).

    Article  ADS  Google Scholar 

  34. G. M. Webb, M. Pantazopolou, and G. P. Zank, “Multiple scattering and the BGK Boltzmann equation,” J. Phys. A Math. Gen. 33, 3137–3160 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported in the framework of the planned funding of the institutions of the National Academy of Sciences of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. A. Shakhov, Yu. I. Fedorov or Yu. L. Kolesnyk.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Translated by E. Smirnova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakhov, B.A., Fedorov, Y.I. & Kolesnyk, Y.L. Kinetic Propagation of Charged Particles in a Magnetic Field at Various Directions of Their Injection. Kinemat. Phys. Celest. Bodies 35, 153–163 (2019). https://doi.org/10.3103/S0884591319040056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591319040056

Navigation