Skip to main content
Log in

Global Regularity for the 2D Boussinesq Equations with Temperature-Dependent Viscosity

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

This paper is devoted to the global regularity for the Cauchy problem of the two-dimensional Boussinesq equations with the temperature-dependent viscosity. We prove the global solutions for this system with any positive power of the fractional Laplacian for temperature under the assumption that the viscosity coefficient is sufficiently close to some positive constant. Our obtained result improves considerably the recent results in Abidi and Zhang (Adv Math 305:1202–1249, 2017) and Zhai et al. (J Differ Equ 267:364–387, 2019). In addition, a regularity criterion via the velocity is also obtained for this system without the above assumption on the viscosity coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abidi, H., Zhang, P.: On the global well-posedness of 2-D Boussinesq system with variable viscosity. Adv. Math. 305, 1202–1249 (2017)

    Article  MathSciNet  Google Scholar 

  2. Adhikari, D., Cao, C., Shang, H., Wu, J., Xu, X., Ye, Z.: Global regularity results for the 2D Boussinesq equations with partial dissipation. J. Differ. Equ. 260, 1893–1917 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bahouri,H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren Math. Wiss., vol. 343. Springer, Berlin (2011)

  4. Cannon, J., DiBenedetto, E.: The Initial Value Problem for the Boussinesq Equation with Data in \(L^{p}\). Lecture Notes in Mathematics, vol. 771. Springer, Berlin (1980)

    MATH  Google Scholar 

  5. Cao, C., Wu, J.: Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation. Arch. Ration. Mech. Anal. 208, 985–1004 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chae, D.: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 203, 497–513 (2006)

    Article  MathSciNet  Google Scholar 

  7. Chen, Q., Jiang, L.: Global well-posedness for the 2-D Boussinesq system with temperature-dependent thermal diffusivity. Colloq. Math. 135, 187–199 (2014)

    Article  MathSciNet  Google Scholar 

  8. Chen, Q., Miao, C., Zhang, Z.: A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation. Commun. Math. Phys. 271, 821–838 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249, 511–528 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. Danchin, R., Paicu, M.: Global existence results for the anisotropic Boussinesq system in dimension two. Math. Models Methods Appl. Sci. 21, 421–457 (2011)

    Article  MathSciNet  Google Scholar 

  11. Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for a Boussinesq–Navier–Stokes system with critical dissipation. J. Differ. Equ. 249, 2147–2174 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for Euler–Boussinesq system with critical dissipation. Commun. Partial Differ. Equ. 36, 420–445 (2011)

    Article  MathSciNet  Google Scholar 

  13. Hou, T.Y., Li, C.: Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst. 12, 1–12 (2005)

    Article  MathSciNet  Google Scholar 

  14. Jiu, Q., Miao, C., Wu, J., Zhang, Z.: The 2D incompressible Boussinesq equations with general critical dissipation. SIAM J. Math. Anal. 46, 3426–3454 (2014)

    Article  MathSciNet  Google Scholar 

  15. Jiu, Q., Liu, J.: Global-wellposedness of 2D Boussinesq equations with mixed partial temperature-dependent viscosity and thermal diffusivity. Nonlinear Anal. 132, 227–239 (2016)

    Article  MathSciNet  Google Scholar 

  16. Li, D., Xu, X.: Global wellposedness of an inviscid 2D Boussinesq system with nonlinear thermal diffusivity. Dyn. PDE 10, 255–265 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Li, H., Pan, R., Zhang, W.: Initial boundary value problem for 2D Boussinesq equations with temperature-dependent diffusion. J. Hyperbolic Differ. Equ. 12, 469–488 (2015)

    Article  MathSciNet  Google Scholar 

  18. Lorca, S., Boldrini, J.: The initial value problem for a generalized Boussinesq model: regularity and global existence of strong solutions. Mat. Contemp. 11, 71–94 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Lorca, S., Boldrini, J.: The initial value problem for a generalized Boussinesq model. Nonlinear Anal. 36, 457–480 (1999)

    Article  MathSciNet  Google Scholar 

  20. Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  21. Miao, C., Xue, L.: On the global well-posedness of a class of Boussinesq–Navier–Stokes systems. NoDEA Nonlinear Differ. Equ. Appl. 18, 707–735 (2011)

    Article  MathSciNet  Google Scholar 

  22. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)

    Book  Google Scholar 

  23. Schonbek, M.: Large time behaviour of solutions to the Navier–Stokes equations. Commun. Partial Differ. Equ. 11, 733–763 (1986)

    Article  MathSciNet  Google Scholar 

  24. Silvestre, L.: On the differentiablity of the solution to an equation with drift and fractional diffusion. Indiana Univ. Math. J. 61(2), 557–584 (2012)

    Article  MathSciNet  Google Scholar 

  25. Stefanov, A., Wu, J.: A global regularity result for the 2D Boussinesq equations with critical dissipation. J. Anal. Math. 137, 269–290 (2019)

    Article  MathSciNet  Google Scholar 

  26. Sun, Y., Zhang, Z.: Global regularity for the initial-boundary value problem of the 2-D Boussinesq system with variable viscosity and thermal diffusivity. J. Differ. Equ. 255, 1069–1085 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Wang, C., Zhang, Z.: Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity. Adv. Math. 228, 43–62 (2011)

    Article  MathSciNet  Google Scholar 

  28. Wu, G., Zheng, X.: Global well-posedness for the two-dimensional nonlinear Boussinesq equations with vertical dissipation. J. Differ. Equ. 255, 2891–2926 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. Wu, J., Xu, X., Xue, L., Ye, Z.: Regularity results for the 2D Boussinesq equations with critical and supercritical dissipation. Commun. Math. Sci. 14, 1963–1997 (2016)

    Article  MathSciNet  Google Scholar 

  30. Xue, L., Ye, Z.: On the differentiability issue of the drift–diffusion equation with nonlocal L\(\rm \acute{e}\)vy-type diffusion. Pac. J. Math. 293, 471–4510 (2018)

    Article  Google Scholar 

  31. Ye, Z., Xu, X.: Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation. J. Differ. Equ. 260, 6716–6744 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Ye, Z.: On the improved blow-up criterion for the 2D zero diffusivity Boussinesq equations with temperature-dependent viscosity. Appl. Anal. 97, 2037–2058 (2018)

    Article  MathSciNet  Google Scholar 

  33. Zhai, X., Dong, B., Chen, Z.: Global well-posedness for 2-D Boussinesq system with the temperature-dependent viscosity and supercritical dissipation. J. Differ. Equ. 267, 364–387 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Jiahong Wu for many constructive suggestions and useful discussions. Dong is partially supported by the National Natural Science Foundation of China (NNSFC) (No. 11871346), the Natural Science Foundation of Guangdong Province (No. 2018A030313024), Research Fund of Shenzhen City (No. JCYJ20180305125554234) and Research Fund of Shenzhen University (No. 2017056). Ye was supported by NNSFC (No. 11701232) and the Natural Science Foundation of Jiangsu Province (No. BK20170224). Zhai is supported by NNSFC (No. 11601533).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuan Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by D. Chae

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Besov spaces and some useful facts

Appendix A. Besov spaces and some useful facts

This Appendix includes several parts. It recalls the Littlewood–Paley theory, introduces the Besov spaces, provides Bernstein inequalities as well as several facts used in the proof of our main result. We start with the Littlewood–Paley theory. We choose some smooth radial non increasing function \(\chi \) with values in [0, 1] such that \(\chi \in C_{0}^{\infty }({\mathbb {R}}^{n})\) is supported in the ball \({\mathcal {B}}:=\{\xi \in {\mathbb {R}}^{n}, |\xi |\le \frac{4}{3}\}\) and and with value 1 on \(\{\xi \in {\mathbb {R}}^{n}, |\xi |\le \frac{3}{4}\}\), then we set \(\varphi (\xi )=\chi \big (\frac{\xi }{2}\big )-\chi (\xi )\). One easily verifies that \({\varphi \in C_{0}^{\infty }({\mathbb {R}}^{n})}\) is supported in the annulus \({\mathcal {C}}:=\{\xi \in {\mathbb {R}}^{n}, \frac{3}{4}\le |\xi |\le \frac{8}{3}\}\) and satisfies

$$\begin{aligned} \chi (\xi )+\sum _{j\ge 0}\varphi (2^{-j}\xi )=1, \quad \forall \xi \in {\mathbb {R}}^{n}. \end{aligned}$$

Let \(h={\mathcal {F}}^{-1}(\varphi )\) and \({\widetilde{h}}={\mathcal {F}}^{-1}(\chi )\), then we introduce the dyadic blocks \(\Delta _{j}\) of our decomposition by setting

$$\begin{aligned} \Delta _{j}u= & {} 0,\ \ j\le -2; \ \ \ \ \ \Delta _{-1}u=\chi (D)u=\int _{{\mathbb {R}}^{n}}{{\widetilde{h}}(y)u(x-y)\,dy};\\ \Delta _{j}u= & {} \varphi (2^{-j}D)u=2^{jn}\int _{{\mathbb {R}}^{n}}{h(2^{j}y)u(x-y)\,dy},\ \ \forall j\in {\mathbb {N}}. \end{aligned}$$

We shall also denote

$$\begin{aligned} \ S_{j}u:=\sum _{-1\le k\le j-1} \Delta _{k}u,\qquad {\widetilde{\Delta }}_{j} u:=\Delta _{j-1}u+\Delta _{j}u+\Delta _{j+1}u. \end{aligned}$$

The nonhomogeneous Besov spaces are defined through the dyadic decomposition.

Definition A.1

Let \(s\in {\mathbb {R}}, (p,r)\in [1,+\infty ]^{2}\). The nonhomogeneous Besov space \(B_{p,r}^{s}\) is defined as a space of \(f\in S'({\mathbb {R}}^{n})\) such that

$$\begin{aligned} B_{p,r}^{s}=\{f\in S'({\mathbb {R}}^{n}); \Vert f\Vert _{B_{p,r}^{s}}<\infty \}, \end{aligned}$$

where

$$\begin{aligned} \Vert f\Vert _{B_{p,r}^{s}}=\left\{ \begin{aligned}&\Big (\sum _{j\ge -1}2^{jrs}\Vert \Delta _{j}f\Vert _{L^{p}}^{r}\Big )^{\frac{1}{r}}, \quad \ r<\infty ,\\&\sup _{j\ge -1} 2^{js}\Vert \Delta _{j}f\Vert _{L^{p}}, \quad \ r=\infty .\\ \end{aligned}\right. \end{aligned}$$

We shall also need the mixed space–time spaces

$$\begin{aligned} \Vert f\Vert _{L_{T}^{\rho }B_{p,r}^{s}}:= \Big \Vert (2^{js}\Vert \Delta _{j}f\Vert _{L^{p}})_{l_{j}^{r}}\Big \Vert _{L_{T}^{\rho }} \end{aligned}$$

and

$$\begin{aligned} \Vert f\Vert _{{\widetilde{L}}_{T}^{\rho }B_{p,r}^{s}}:= (2^{js}\Vert \Delta _{j}f\Vert _{L_{T}^{\rho }L^{p}})_{l_{j}^{r}}. \end{aligned}$$

The following links are direct consequence of the Minkowski inequality

$$\begin{aligned} L_{T}^{\rho }B_{p,r}^{s}\hookrightarrow {\widetilde{L}}_{T}^{\rho }B_{p,r}^{s},\qquad \text{ if }\,\,r\ge \rho , \quad \text{ and } \quad {\widetilde{L}}_{{T}}^{\rho }B_{p,r}^{s}\hookrightarrow {L}_{T}^{\rho }B_{p,r}^{s},\qquad \text{ if }\,\,\rho \ge r. \end{aligned}$$

In particular,

$$\begin{aligned} {\widetilde{L}}_{{T}}^{r}B_{p,r}^{s}\thickapprox {L}_{T}^{r}B_{p,r}^{s}. \end{aligned}$$

The following lemma provides Bernstein type inequalities for fractional derivatives

Lemma A.1

(see [3]). Assume \(1\le a\le b\le \infty \). If the integer \(j\ge -1\), then it holds

$$\begin{aligned} \Vert \Lambda ^{k}\Delta _{j}f\Vert _{L^b} \le C_1\, 2^{j k + jn(\frac{1}{a}-\frac{1}{b})} \Vert \Delta _{j}f\Vert _{L^a},\quad k\ge 0. \end{aligned}$$

If the integer \(j\ge 0\), then we have

$$\begin{aligned} C_2\, 2^{ j k} \Vert \Delta _{j}f\Vert _{L^b } \le \Vert \Lambda ^{k}\Delta _{j}f\Vert _{L^b } \le C_3\, 2^{ j k + j n(\frac{1}{a}-\frac{1}{b})} \Vert \Delta _{j}f\Vert _{L^a},\quad k\in {\mathbb {R}}, \end{aligned}$$

where \(C_1\), \(C_2\) and \(C_3\) are constants depending on ka and b only.

Finally, we state the following fundamental commutator estimates which have been used repeatedly.

Lemma A.2

(See [3]). Let \( \theta \) be a \(C^{1}\) function on \({\mathbb {R}}^{n}\) such that \(|x|{\check{\theta }}(x)\in L^{1}\). There exists a constant C such that for any Lipschitz function a with gradient in \(L^{p}\) and any function b in \(L^{q}\), we have, for any positive \(\lambda \),

$$\begin{aligned} \Vert [\theta (\lambda ^{-1}D), a]b\Vert _{L^{r}}\le C\lambda ^{-1}\Vert \nabla a\Vert _{L^{p}}\Vert b\Vert _{L^{q}} \ \ with \ \ \frac{1}{p}+\frac{1}{q}=\frac{1}{r},\,\,(p,q)\in [1,\infty ]^{2}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, BQ., Ye, Z. & Zhai, X. Global Regularity for the 2D Boussinesq Equations with Temperature-Dependent Viscosity. J. Math. Fluid Mech. 22, 2 (2020). https://doi.org/10.1007/s00021-019-0463-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0463-0

Keywords

Mathematics Subject Classification

Navigation