Skip to main content
Log in

The Stokes Limit in a Three-Dimensional Chemotaxis-Navier–Stokes System

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider initial-boundary value problems for the \(\kappa \)-dependent family of chemotaxis-(Navier–)Stokes systems

$$\begin{aligned} \left\{ \begin{array}{lllllll} n_{t}&{}+&{}u\cdot \!\nabla n&{}=\Delta n-\nabla \!\cdot (n\nabla c), &{}x\in \Omega ,&{} t>0,\\ c_{t}&{}+&{}u\cdot \!\nabla c&{}=\Delta c-cn, &{}x\in \Omega ,&{} t>0,\\ u_{t}&{}+&{} \kappa (u\cdot \nabla )u&{}=\Delta u+\nabla P+n\nabla \phi , &{}x\in \Omega ,&{} t>0,\\ &{}&{} \nabla \cdot u&{}=0, &{}x\in \Omega ,&{} t>0, \end{array}\right. \end{aligned}$$

in a bounded domain \(\Omega \subset {\mathbb {R}}^3\) with smooth boundary and given potential function \(\phi \in C^{1+\beta }\!\left( {{\,\mathrm{{\overline{\Omega }}}\,}}\right) \) for some \(\beta >0\). It is known that for fixed \(\kappa \in {\mathbb {R}}\) an associated initial-boundary value problem possesses at least one global weak solution \((n^{(\kappa )},c^{(\kappa )},u^{(\kappa )})\), which after some waiting time becomes a classical solution of the system. In this work we will show that upon letting \(\kappa \rightarrow 0\) the solutions \((n^{(\kappa )},c^{(\kappa )},u^{(\kappa )})\) converge towards a weak solution of the Stokes variant \((\kappa =0)\) of the systems above with respect to the strong topology in certain Lebesgue and Sobolev spaces. We thereby extend the recently obtained result on the Stokes limit process for classical solutions in the two-dimensional setting to the more intricate three-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Amann, H.: Compact embeddings of vector-valued Sobolev and Besov spaces. Glas. Mat. Ser. III 35(55)(1), 161–177 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Model. Methods Appl. Sci. 25(09), 1663–1763 (2015)

    Article  MathSciNet  Google Scholar 

  3. Chae, M., Kang, K., Lee, J.: Global existence and temporal decay in Keller–Segel models coupled to fluid equations. Commun. Partial Differ. Equ. 39(7), 1205–1235 (2014)

    Article  MathSciNet  Google Scholar 

  4. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  5. Duan, R., Xiang, Z.: A note on global existence for the Chemotaxis–Stokes model with nonlinear diffusion. Int. Math. Res. Not. IMRN 7, 1833–1852 (2014)

    Article  MathSciNet  Google Scholar 

  6. Duan, R., Lorz, A., Markowich, P.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equ. 35(9), 1635–1673 (2010)

    Article  MathSciNet  Google Scholar 

  7. Giga, Y.: Solutions for semilinear parabolic equations in \(L_p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62(2), 186–212 (1986)

    Article  ADS  Google Scholar 

  8. Giga, Y., Sohr, H.: Abstract \(L^p\) estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102(1), 72–94 (1991)

    Article  MathSciNet  Google Scholar 

  9. Haroske, D.D., Triebel, H.: Distributions, Sobolev spaces, elliptic equations. EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich (2008)

  10. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    Book  Google Scholar 

  11. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller–Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ> 256(8), 2993–3010 (2014)

    Article  MathSciNet  Google Scholar 

  12. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  13. Kozono, H., Miura, M., Sugiyama, Y.: Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid. J. Funct. Anal. 270(5), 1663–1683 (2016)

    Article  MathSciNet  Google Scholar 

  14. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs. American Mathematical Society, Providence (1968)

    Book  Google Scholar 

  15. Lankeit, J.: Long-term behaviour in a chemotaxis-fluid system with logistic source. Math. Model. Methods Appl. Sci. 26(11), 2071–2109 (2016)

    Article  MathSciNet  Google Scholar 

  16. Mendelson, N.H., Bourque, A., Wilkening, K., Anderson, K.R., Watkins, J.C.: Organized cell swimming motions in Bacillus subtilis colonies: patterns of short-lived whirls and jets. J. Bacteriol. 181(2), 600–609 (1999)

    Article  Google Scholar 

  17. Miyakawa, T., Sohr, H.: On energy inequality, smoothness and large time behavior in \(L^2\) for weak solutions of the Navier–Stokes equations in exterior domains. Math. Z. 199(4), 455–478 (1988)

    Article  MathSciNet  Google Scholar 

  18. Mizoguchi, N., Souplet, Ph: Nondegeneracy of blow-up points for the parabolic Keller–Segel system. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(4), 851–875 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  19. Mizukami, M.: How strongly does diffusion or logistic-type degradation affect existence of global weak solutions in a chemotaxis-Navier–Stokes system? Z. Angew. Math. Phys. 70(2), 70:49 (2019)

    Article  MathSciNet  Google Scholar 

  20. Simon, J.: Compact sets in the space \({L}^p(0,{T};{B})\). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MathSciNet  Google Scholar 

  21. Sohr, H.: The Navier–Stokes Equations. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel (2001)

    Book  Google Scholar 

  22. Solonnikov, V.A.: Schauder Estimates for the Evolutionary Generalized Stokes Problem. In: Birman, M.S. (ed.) Nonlinear Equations and Spectral Theory, pp. 165–200. American Mathematical Society, Providence (2007)

    Google Scholar 

  23. Tao, Y.: Boundedness in a chemotaxis model with oxygen consumption by bacteria. J. Math. Anal. Appl. 381(2), 521–529 (2011)

    Article  MathSciNet  Google Scholar 

  24. Tao, Y., Winkler, M.: Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252(3), 2520–2543 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  25. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. 102(7), 2277–2282 (2005)

    Article  ADS  Google Scholar 

  26. Wang, Y., Winkler, M., Xiang, Z.: The small-convection limit in a two-dimensional chemotaxis-Navier–Stokes system. Math. Z. 289(1–2), 71–108 (2018)

    Article  MathSciNet  Google Scholar 

  27. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248(12), 2889–2905 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  28. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37(2), 319–351 (2012)

    Article  MathSciNet  Google Scholar 

  29. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 211(2), 455–487 (2014)

    Article  MathSciNet  Google Scholar 

  30. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1329–1352 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Winkler, M.: How far do chemotaxis-driven forces influence regularity in the Navier–Stokes system? Trans. Am. Math. Soc. 369(5), 3067–3125 (2017)

    Article  MathSciNet  Google Scholar 

  32. Zhang, Q., Li, Y.: Global weak solutions for the three-dimensional chemotaxis-Navier–Stokes system with nonlinear diffusion. J. Differ. Equ. 259(8), 3730–3754 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the project Emergence of structures and advantages in cross-diffusion systems (Project No. 411007140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Black.

Additional information

Communicated by Y. Giga

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Black, T. The Stokes Limit in a Three-Dimensional Chemotaxis-Navier–Stokes System. J. Math. Fluid Mech. 22, 1 (2020). https://doi.org/10.1007/s00021-019-0464-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0464-z

Keywords

Mathematics Subject Classification

Navigation