Skip to main content
Log in

Effect of the Optical Pumping and Magnetic Field on the States of Phase Separation Domains in Eu0.8Ce0.2Mn2O5

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The effect of optical pumping and applied magnetic field on the characteristics of ferromagnetic layers in one-dimensional superlattices is studied. At low enough temperatures, these layers correspond to phase separation domains in RMn2O5 and R0.8Ce0.2Mn2O5 multiferroics. The formation of such domains occurs owing to the charge ordering of Mn3+ and Mn4+ ions and to the finite probability for eg electrons to tunnel between these pairs of ions. The volume occupied by such superlattices is rather small, and they can be treated as isolated ferromagnetic semiconductor heterostructures, spontaneously formed in the host crystal. The sequences of ferromagnetic resonances related to the superlattice layers in Eu0.8Ce0.2Mn2O5 are studied. The characteristics of these resonances give information on the properties of such layers. For the first time, it is demonstrated that the optical pumping gives rise to a new metastable state of superlattices, which can be recovered by the magnetic field cycling to the state existing before the optical pumping. It is found that the superlattices recovered by the magnetic field exist up to temperatures higher than those in as-grown crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Radaelli and L. C. Chapon, J. Phys.: Condens. Matter 20, 434213 (2008).

    ADS  Google Scholar 

  2. P. G. de Gennes, Phys. Rev. 118, 141 (1960).

    Article  ADS  Google Scholar 

  3. L. P. Gor’kov, Phys. Usp. 41, 581 (1998).

    Article  ADS  Google Scholar 

  4. Y. Noda, H. Kimura, M. Fukunaga, S. Kobayashi, I. Kagomiya, and K. Kohn, J. Phys.: Condens. Matter 20, 434206 (2008).

    ADS  Google Scholar 

  5. J. van den Brink and D. I. Khomskii, J. Phys.: Condens. Matter 20, 434217 (2008).

    Google Scholar 

  6. V. A. Sanina, E. I. Golovenchits, V. G. Zalesskii, S. G. Lushnikov, M. P. Scheglov, S. N. Gvasaliya, A. Savvinov, R. S. Katiyar, H. Kawaji, and T. Atake, Phys. Rev. B 80, 224401 (2009).

    Article  ADS  Google Scholar 

  7. V. A. Sanina, E. I. Golovenchits, V. G. Zalesskii, and M. P. Scheglov, J. Phys.: Condens. Matter 23, 456003 (2011).

    Google Scholar 

  8. V. A. Sanina, E. I. Golovenchits, B. Kh. Khannanov, M. P. Scheglov, and V. G. Zalesskii, JETP Lett. 100, 407 (2014).

    Article  ADS  Google Scholar 

  9. B. Kh. Khannanov, V. A. Sanina, E. I. Golovenchits, and M. P. Scheglov, JETP Lett. 103, 248 (2016).

    Article  ADS  Google Scholar 

  10. B. Kh. Khannanov, V. A. Sanina, and E. I. Golovenchits, J. Phys.: Conf. Ser. 572, 012046 (2014).

    Google Scholar 

  11. B. Kh. Khannanov, V. A. Sanina, E. I. Golovenchits, and M. P. Scheglov, J. Magn. Magn. Mater. 421, 326 (2017).

    Article  ADS  Google Scholar 

  12. D. S. Andrievskii, S. I. Vorob’ev, A. L. Getalov, E. I. Golovenchits, E. N. Komarov, S. A. Kotov, V. A. Sanina, and G. V. Shcherbakov, JETP Lett. 106, 295 (2017).

    Article  ADS  Google Scholar 

  13. S. I. Vorob’ev, A. L. Getalov, E. I. Golovenchits, E. N. Komarov, S. A. Kotov, V. A. Sanina, and G. V. Shcherbakov, JETP Lett. 110, 133 (2019).

    Article  ADS  Google Scholar 

  14. M. Yu. Kagan and K. I. Kugel’, Phys. Usp. 44, 553 (2001).

    Article  ADS  Google Scholar 

  15. J. Lorenzana, J. C. Castellani, and C. di Castro, Europhys. Lett. 57, 704 (2002).

    Article  ADS  Google Scholar 

  16. K. I. Kugel, A. L. Rakhmanov, A. O. Sboychakov, F. V. Kustmarsev, N. Poccia, and A. Bianconi, Supercond. Sci. Technol. 22, 014007 (2009).

    Article  ADS  Google Scholar 

  17. E. I. Golovenchits, V. A. Sanina, and V. G. Zalesskii, JETP Lett. 95, 386 (2012).

    Article  ADS  Google Scholar 

  18. V. A. Sanina, E. I. Golovenchits, and V. G. Zalesskii, J. Phys.: Condens. Matter 24, 346002 (2012).

    Google Scholar 

  19. V. A. Sanina, B. Kh. Khannanov, and E. I. Golovenchits, Phys. Solid State 59, 1952 (2017).

    Article  ADS  Google Scholar 

  20. V. A. Sanina, E. I. Golovenchits, V. G. Zalesskii, and B. Kh. Khannanov, J. Phys.: Condens. Matter 25, 336001 (2013).

    Google Scholar 

  21. V. A. Sanina, L. M. Sapozhnikova, E. I. Golovenchits, and N. V. Morozov, Sov. Phys. Solid State 30, 1736 (1988).

    Google Scholar 

  22. A. V. Babinskii, E. I. Golovenchits, N. V. Morozov, and L. M. Sapozhnikova, Sov. Phys. Solid State 34, 56 (1992).

    Google Scholar 

  23. A. S. Moskvin and R. V. Pisarev, J. Low Temp. Phys. 36, 489 (2010).

    Article  Google Scholar 

  24. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves. (Fizmatlit, Moscow, 1994; CRC, New York, 1996).

    Google Scholar 

  25. A. P. Silin, Sov. Phys. Usp. 28, 972 (1985).

    Article  ADS  Google Scholar 

  26. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors. (Springer, Heidelberg, 1984).

    Book  Google Scholar 

  27. B. Kh. Khannanov, E. I. Golovenchits, and V. A. Sanina, Phys. Solid State 62, 660 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-32-00241) and by the Presidium of the Russian Academy of Sciences (program 1.4 “Topical Problems of Low-Temperature Physics”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Sanina.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 12, pp. 826–832.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovenchits, E.I., Khannanov, B.K. & Sanina, V.A. Effect of the Optical Pumping and Magnetic Field on the States of Phase Separation Domains in Eu0.8Ce0.2Mn2O5. Jetp Lett. 111, 709–714 (2020). https://doi.org/10.1134/S0021364020120073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020120073

Navigation