Skip to main content
Log in

Controllable Source of Single Photons Based on a Micromaser with an Atomic Beam without Inversion

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A source of single rf photons based on a micromaser with pumping atoms without population inversion is considered. Inversion is absent because atoms in the upper and lower states alternately enter the cavity. The generation process is a continuous maintenance of the field inside the cavity in such a state that the number of photons in the pumped mode is equal to one. The field can be extracted from the cavity in a controlled manner so that the pump atoms stop transmitting energy to the cavity during the photon detection process. This effect allows reaching significant reduction of the probability of detecting correlated photon pairs and using the source in quantum computing and cryptography. In addition, fluctuations in the squeezed state of the rf field that are due to disordered alternation of atoms in the beam are simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, Phys. Scr. 91, 051001 (2016).

    Article  Google Scholar 

  2. A. Lvovsky, arXiv: 1401.4118v2 (2014).

  3. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics. (Cambridge Univ. Press, Cambridge, 1995), p. 1194.

    Book  Google Scholar 

  4. Yu. M. Golubev and I. V. Sokolov, Sov. Phys. JETP 60, 234 (1984).

    Google Scholar 

  5. T. B. Karlovich and S. Ya. Kilin, Opt. Spectrosc. 91, 343 (2001).

    Article  ADS  Google Scholar 

  6. N. V. Larionov and M. I. Klobov, Phys. Rev. A 88, 013843 (2013).

    Article  ADS  Google Scholar 

  7. J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, Nature (London, U.K.) 425, 268 (2003).

    Article  ADS  Google Scholar 

  8. N. Kukharchyk, D. Sholokhov, O. Morozov, S. L. Korableva, J. H. Cole, A. A. Kalachev, and P. A. Bushev, Opt. Lett. 43, 935 (2018).

    Article  ADS  Google Scholar 

  9. A. A. Shukhin and A. A. Kalachev, Bull. Russ. Acad. Sci.: Phys. 80, 785 (2016).

    Article  Google Scholar 

  10. M. Akbari and A. A. Kalachev, Laser Phys. Lett. 13, 115204 (2016).

    Article  ADS  Google Scholar 

  11. M. V. Rakhlin, K. G. Belyaev, S. V. Sorokin, I. V. Sedova, D. A. Kirilenko, A. M. Mozharov, I. S. Mukhin, M. M. Kulagina, Yu. M. Zadiranov, S. V. Ivanov, and A. A. Toropov, JETP Lett. 108, 201 (2018).

    Article  ADS  Google Scholar 

  12. M. V. Rakhlin, K. G. Belyaev, G. V. Klimko, I. V. Sedova, M. M. Kulagina, Yu. M. Zadiranov, S. I. Troshkov, Yu. A. Guseva, Ya. V. Terent’ev, S. V. Ivanov, and A. A. Toropov, JETP Lett. 109, 145 (2019).

    Article  ADS  Google Scholar 

  13. A. V. Naumov, Phys. Usp. 56, 605 (2013).

    Article  ADS  Google Scholar 

  14. I. Yu. Eremchev, M. Yu. Eremchev, and A. V. Naumov, Phys. Usp. 62, 294 (2019).

    Article  ADS  Google Scholar 

  15. D. Meschede, H. Walther, and G. Müller, Phys. Rev. Lett. 54, 551 (1985).

    Article  ADS  Google Scholar 

  16. V. A. Reshetov and I. V. Yevseyev, Laser Phys. Lett. 1, 124 (2004).

    Article  ADS  Google Scholar 

  17. J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001).

    Article  ADS  Google Scholar 

  18. S. D. Huver, C. F. Wildfeuer, and J. P. Dowling, Phys. Rev. A 78, 063828 (2008).

    Article  ADS  Google Scholar 

  19. H. Walther, B. T. H. Varcoe, B. Englert, and T. Becker, Rep. Prog. Phys. 69, 1325 (2006).

    Article  ADS  Google Scholar 

  20. V. A. Reshetov, E. N. Popov, and I. V. Yevseyev, Laser Phys. Lett. 7, 218 (2010).

    Article  ADS  Google Scholar 

  21. P. Filipowicz, J. Javanainen, and P. Meystre, Phys. Rev. A 34, 3077 (1986).

    Article  ADS  Google Scholar 

  22. D. Yu, L. C. Kwek, L. Amico, and R. Dumke, Phys. Rev. A 95, 053811 (2017).

    Article  ADS  Google Scholar 

  23. L. Jin, M. Pfender, N. Aslam, P. Neumann, S. Yang, J. Wrachtrup, and R.-B. Liu, Nat. Commun. 6, 8251 (2015).

    Article  ADS  Google Scholar 

  24. B. T. H. Varcoe, S. Brattke, M. Weidinger, and H. Walther, Nature (London, U.K.) 403, 743 (2000).

    Article  ADS  Google Scholar 

  25. G. S. Agarwal and Y. Zhu, Phys. Rev. A 92, 023824 (2015).

    Article  ADS  Google Scholar 

  26. A. A. Houck, D. I. Schuster, J. M. Gambetta, J. A. Schreier, B. R. Johnson, J. M. Chow, L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Nature (London, U.K.) 449, 328 (2007).

    Article  ADS  Google Scholar 

  27. M. Alexanian, S. Bose, and L. Chow, J. Mod. Opt. 45, 2519 (1998).

    Article  ADS  Google Scholar 

  28. A. Z. Khoury and T. B. L. Kist, Phys. Rev. A 55, 2304 (1997).

    Article  ADS  Google Scholar 

  29. M. Weidinger, B. T. H. Varcoe, R. Heerlein, and H. Walther, Phys. Rev. Lett. 82, 3795 (1999).

    Article  ADS  Google Scholar 

  30. B.-G. Englert, arXiv: quant-ph/0203052 (2002).

  31. A. F. Kockum and F. Nori, in Fundamentals and Frontiers of the Josephson Effect, Ed. by F. Tafuri, Springer Ser. Mater. Sci. 286, 703 (2019).

    Article  Google Scholar 

  32. A. L. Grimsmo and A. Blais, npj Quantum Inf. 3, 1 (2017).

    Article  Google Scholar 

  33. M. Thornton, A. Sakovich, A. Mikhalychev, J. D. Ferrer, P. de la Hoz, N. Korolkova, and D. Mogilevtsev, Phys. Rev. Appl. 12, 064051 (2019).

    Article  ADS  Google Scholar 

  34. G. P. Miroshnichenko, Nanosist.: Fiz., Khim., Mat. 2, 47 (2011).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-32-00250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Popov.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 12, pp. 846–852.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, E.N., Reshetov, V.A. Controllable Source of Single Photons Based on a Micromaser with an Atomic Beam without Inversion. Jetp Lett. 111, 727–733 (2020). https://doi.org/10.1134/S0021364020120127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020120127

Navigation