Skip to main content
Log in

Nonlinear AC and DC Conductivities in a Two-Subband n-GaAs/AlAs Heterostructure

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The DC and AC conductivities of the n-GaAs/AlAs heterostructure with two filled size quantization levels are studied within a wide magnetic field range. The electron spectrum of such heterostructure is characterized by two subbands (symmetric S and antisymmetric AS), separated by the band gap Δ12 = 15.5 meV. It is shown that, in the linear regime at the applied magnetic field B > 3 T, the system exhibits oscillations corresponding to the integer quantum Hall effect. A quite complicated pattern of such oscillations is well interpreted in terms of transitions between Landau levels related to different subbands. At B < 1 T, magneto-intersubband resistance oscillations (MISOs) are observed. An increase in the conductivity with the electric current flowing across the sample or in the intensity of the surface acoustic wave (SAW) in the regime of the integer quantum Hall effect is determined by an increase in the electron gas temperature. In the case of intersubband transitions, it is found that nonlinearity cannot be explained by heating. At the same time, the decrease in the AC conductivity with increasing SAW electric field is independent of frequency, but the corresponding behavior does not coincide with that corresponding to the dependence of the DC conductivity on the Hall voltage Ey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Polyanovskii, Sov. Phys. Semicond. 22, 1408 (1988).

    Google Scholar 

  2. G. S. Boebinger, H. W. Jiang, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 64, 1793 (1990).

    Article  ADS  Google Scholar 

  3. M. E. Raikh and T. V. Shahbazyan, Phys. Rev. B 49, 5531 (1994).

    Article  ADS  Google Scholar 

  4. N. S. Averkiev, L. E. Golub, S. A. Tarasenko, and M. Willander, J. Phys.: Condens. Matter 13, 2517 (2001).

    ADS  Google Scholar 

  5. O. E. Raichev, Phys. Rev. B 78, 125304 (2008).

    Article  ADS  Google Scholar 

  6. D. R. Leadley, R. Fletcher, R. J. Nicholas, F. Tao, C. T. Foxon, and J. J. Harris, Phys. Rev. B 46, 12439 (1992).

    Article  ADS  Google Scholar 

  7. A. A. Bykov, D. R. Islamov, A. V. Goran, and A. I. Toropov, JETP Lett. 87, 477 (2008).

    Article  ADS  Google Scholar 

  8. G. M. Min’kov, O. E. Rut, A. A. Sherstobitov, S. A. Dvoretski, and N. N. Mikhailov, JETP Lett. 110, 301 (2019).

    Article  ADS  Google Scholar 

  9. Y. W. Suen, L. W. Engel, M. B. Santos, M. Shayegan, and D. C. Tsui, Phys. Rev. Lett. 68, 1379 (1992).

    Article  ADS  Google Scholar 

  10. X. Y. Lee, H. W. Jiang, and W. J. Schaff, Phys. Rev. Lett. 83, 3701 (1999).

    Article  ADS  Google Scholar 

  11. X. C. Zhang, D. R. Faulhaber, and H. W. Jiang, Phys. Rev. Lett. 95, 216801 (2005).

    Article  ADS  Google Scholar 

  12. A. A. Bykov, JETP Lett. 88, 64 (2008).

    Article  ADS  Google Scholar 

  13. N. C. Mamani, G. M. Gusev, O. E. Raichev, T. E. Lamas, and A. K. Bakarov, Phys. Rev. B 80, 075308 (2009).

    Article  ADS  Google Scholar 

  14. S. Wiedmann, G. M. Gusev, O. E. Raichev, A. K. Bakarov, and J. C. Portal, Phys. Rev. B 84, 165303 (2011).

    Article  ADS  Google Scholar 

  15. S. Dietrich, S. Byrnes, S. Vikalov, A. V. Goran, and A. A. Bykov, Phys. Rev. B 86, 075471 (2012).

    Article  ADS  Google Scholar 

  16. I. L. Drichko, I. Yu. Smirnov, M. O. Nestoklon, A. V. Suslov, D. Kamburov, K. W. Baldwin, L. N. Pfeiffer, K. W. West, and L. E. Golub, Phys. Rev. B 97, 075427 (2018).

    Article  ADS  Google Scholar 

  17. A. A. Bykov, I. S. Strygin, A. V. Goran, I. V. Marchishin, D. V. Nomokonov, A. K. Bakarov, S. Abedi, and S. A. Vitkalov, JETP Lett. 109, 400 (2019).

    Article  ADS  Google Scholar 

  18. A. A. Dmitriev, I. L. Drichko, I. Yu. Smirnov, A. K. Bakarov, and A. A. Bykov, JETP Lett. 110, 68 (2019).

    Article  ADS  Google Scholar 

  19. A. V. Goran, A. A. Bykov, A. I. Toropov, and S. A. Vitkalov, Phys. Rev. B 80, 193305 (2009).

    Article  ADS  Google Scholar 

  20. A. A. Bykov, A. V. Goran, and S. A. Vitkalov, Phys. Rev. B 81, 155322 (2010).

    Article  ADS  Google Scholar 

  21. W. Mayer, S. Vitkalov, and A. A. Bykov, Phys. Rev. B 96, 045436 (2017).

    Article  ADS  Google Scholar 

  22. A. A. Bykov, JETP Lett. 100, 786 (2015).

    Article  ADS  Google Scholar 

  23. A. L. Efros, Sov. Phys. JETP 62, 1057 (1985).

    Google Scholar 

  24. G. Ebert, K. von Klitzing, K. Ploog, and G. Weimann, J. Phys. C: Solid State Phys. 16, 5441 (1983).

    Article  ADS  Google Scholar 

  25. J. A. Alexander-Webber, A. M. R. Baker, P. D. Buckle, T. Ashley, and R. J. Nicholas, Phys. Rev. B 86, 045404 (2012).

    Article  ADS  Google Scholar 

  26. I. L. Drichko, A. M. D’yakonov, V. D. Kagan, A. M. Kreshchuk, T. A. Polyanskaya, I. G. Savel’ev, I. Yu. Smirnov, and A. V. Suslov, Semiconductors 31, 1170 (1997).

    Article  ADS  Google Scholar 

  27. I. A. Dmitriev, M. G. Vavilov, I. L. Aleiner, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. B 71, 115316 (2005).

    Article  ADS  Google Scholar 

  28. J. Q. Zhang, S. Vitkalov, A. A. Bykov, A. K. Kalagin, and A. K. Bakarov, Phys. Rev. B 75, 081305(R) (2007).

    Article  ADS  Google Scholar 

  29. J. Q. Zhang, S. Vitkalov, and A. A. Bykov, Phys. Rev. B 80, 045310 (2009).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 19-02-00124 and 20-02-00309) and by the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Drichko.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 1, pp. 54–61.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drichko, I.L., Smirnov, I.Y., Bakarov, A.K. et al. Nonlinear AC and DC Conductivities in a Two-Subband n-GaAs/AlAs Heterostructure. Jetp Lett. 112, 45–52 (2020). https://doi.org/10.1134/S0021364020130068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020130068

Navigation