Skip to main content
Log in

Angular momentum bounds in particle systems

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Four expressions involving sums of position and velocity coordinates bounding the total angular momentum of particle systems, and by extension of any continuous or discontinuous material systems, are derived which are tighter for any particle configuration than similar inequalities derived by Sundman (Acta Math 36:105, 1913), Saari (Conference board of the mathematical sciences, No. 104, 2005. http://books.google.ch/books?id=uNXgf2X1GeYC) and Scheeres (Celest Mech Dyn Astron 113:291–320, 2012. https://doi.org/10.1007/s10569-012-9416-0). Eight distinct inequalities can thus be ordered according to their tightness to angular momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The double sum has been eliminated using Lagrange’s identity.

References

  • Binney, J., Tremaine, S.: Galactic Dynamics, 2nd edn. Princeton University Press, Princeton (2008)

    Book  Google Scholar 

  • Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium. Dover, New York (1987)

    MATH  Google Scholar 

  • Diacu, F.N.: An extension of Sundman inequality. Top. Astrophys. Astron. Space Sci. 3, 67–70 (1987)

    ADS  Google Scholar 

  • Ge, Y.C., Leng, X.: Effective potential, Hill-type stability and Sundman’s inequality. Planet. Space Sci. 42, 231–237 (1994). https://doi.org/10.1016/0032-0633(94)90086-8

    Article  ADS  Google Scholar 

  • Goldstein, H.: Classical Mechanics. Addison-Wesley, Boston (1971)

    MATH  Google Scholar 

  • Hill, R.: Principles of Dynamics. Macmillan, London (1964)

    Chapter  Google Scholar 

  • Jacobi, C., Borchardt, C., Clebsch, A.: Vorlesungen über Dynamik. G. Reimer, Almonte (1866)

  • Muller, J.M.: Sundman’s inequality and zero velocity hypersurfaces in the general N-body problem. Astron. Astrophys. 155, L1 (1986)

    ADS  MATH  Google Scholar 

  • Ossipkov, L.P.: Upper limit on the angular momentum of galaxies. I. Astrophysics 42, 451 (1999)

    Article  ADS  Google Scholar 

  • Ossipkov, L.P.: Upper limit on the angular momentum of galaxies. II. Astrophysics 43, 40 (2000). https://doi.org/10.1007/BF02683946

    Article  ADS  Google Scholar 

  • Pfenniger, D.: Mixing transformations of N particles conserving almost all classical integrals. In: Gurzadyan, V.G., Pfenniger, D. (eds.) Ergodic Concepts in Stellar Dynamics, Lecture Notes in Physics, vol. 430, p. 111. Springer, Berlin (1994). https://doi.org/10.1007/BFb0058097

    Chapter  Google Scholar 

  • Poincaré, H.: Mémoires et observations. Sur l’équilibre d’une masse fluide animée d’un mouvement de rotation. Bull. Astron. Ser. I 2, 109–118 (1885)

    Google Scholar 

  • Quilghini, D.: Sul problema generale dell’equilibrio spoataneo di una massa fluida gravitante e ruotante. Anali di Mat. Pura ed Appl. 48, 281–303 (1959)

    Article  MathSciNet  Google Scholar 

  • Saari, D.: Collisions, rings, and other Newtonian N-body problems. In: Conference Board of the Mathematical Sciences, No. 104 (2005)

  • Scheeres, D.J.: Minimum energy configurations in the N-body problem and the celestial mechanics of granular systems. Celest. Mech. Dyn. Astron. 113, 291–320 (2012). https://doi.org/10.1007/s10569-012-9416-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sundman, K.: Mémoire sur le problème des trois corps. Acta Math. 36, 105 (1913)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pfenniger.

Ethics declarations

Conflict of interest

The author declares he has no conflict of interest for publishing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection on 50 years of Celestial Mechanics and Dynamical Astronomy

Guest Editors: Editorial Committee.

Appendices

Appendix I: Hill’s inequations

In Hill’s book (1964, pp. 29–30) is proved an important double inequation that we display here in more current notations. For any pair of real three-vector sets \(\{\mathbf {a}_i\}\) and \(\{\mathbf {b}_i\}\), \(i=1\ldots N\), then

$$\begin{aligned} \sum _i {\mathbf {a}}_i^2\sum _j {\mathbf {b}}_j^2 - \left( \sum _i {\mathbf {a}}_i\cdot {\mathbf {b}}_i\right) ^2\ge & {} \left( \sum _i \left| {\mathbf {a}}_i\wedge {\mathbf {b}}_i \right| \right) ^2 \end{aligned}$$
(52)
$$\begin{aligned}\ge & {} \left( \sum _i {\mathbf {a}}_i\wedge {\mathbf {b}}_i \right) ^2 . \end{aligned}$$
(53)

The demonstration uses the vector relations

$$\begin{aligned} {\mathbf {a}}\cdot {\mathbf {b}} = a b \cos \theta \quad \mathrm {and} \quad \left| {\mathbf {a}}\wedge {\mathbf {b}}\right| = a b \sin \theta . \end{aligned}$$
(54)

where \(\theta \) is the angle between the vectors \( {\mathbf {a}}\) and \( {\mathbf {b}}\), and a, b are the lengths of \( {\mathbf {a}}\) and \( {\mathbf {b}}\).

Thus, subtracting the right side from the left side in Eq. (52), expanding the squared sums in double sums and using the trigonometric identity \(\cos (\theta -\eta ) = \cos (\theta )\cos (\eta ) + \sin (\theta )\sin (\eta )\), we obtain,

$$\begin{aligned}&\sum _{i,j} a_i^2 b_j^2 - a_i b_i a_j b_j \cos \theta _i \cos \theta _j - a_i b_i a_j b_j \sin \theta _i \sin \theta _j \end{aligned}$$
(55)
$$\begin{aligned}&\qquad =\sum _{i,j} a_i^2 b_j^2 - a_i b_i a_j b_j \cos (\theta _i -\theta _j). \end{aligned}$$
(56)

Each diagonal term with \(i=j\) vanishes, and each pair of nondiagonal terms \(i\ne j\) provides a nonnegative contribution to the sum,

$$\begin{aligned} a_i^2 b_j^2+a_j^2 b_i^2 -2a_i b_ja_jb_i\cos (\theta _i -\theta _j) \ge (a_ib_j-a_j b_i)^2 \ge 0. \end{aligned}$$
(57)

The equality in Eq. (52) is reached when all the ratios \(a_i/b_j\) are equal, and all the angles \(\theta _i\) are equal.

Finally, Eq. (53) follows from the triangle inequality \(|a|+|b|\ge |a+b|\).

Using the triangle inequality for the quadratic norm, \((|a|+|b|)^2 \ge a^2+b^2\), one can also express another inequality

$$\begin{aligned} \sum _i {\mathbf {a}}_i^2\sum _j {\mathbf {b}}_j^2 - \left( \sum _i {\mathbf {a}}_i\cdot {\mathbf {b}}_i\right) ^2\ge & {} \left( \sum _i \left| {\mathbf {a}}_i\wedge {\mathbf {b}}_i \right| \right) ^2 \end{aligned}$$
(58)
$$\begin{aligned}\ge & {} \sum _i \left( {\mathbf {a}}_i\wedge {\mathbf {b}}_i \right) ^2, \end{aligned}$$
(59)

which is distinct from Eq. (53), that is, in different cases either the right-hand side of Eq. (53) or that of Eq. (59) is the largest term.

Appendix II: Weighted Binet–Cauchy identities

For m pairs of real or complex N-dimensional vectors \(a_{ki}\) and \(b_{ki}\), \(k \in [1,\ldots m]\), and the real or complex N-dimensional vector \(w_{i}\), \(i \in [1,\ldots N]\), we have the following simplifications of antisymmetric double sums.

1.1 1. Odd m

If m is odd,

$$\begin{aligned} \sum _{i=1, j=1}^{N} w_i w_j \prod _{k=1}^m \left( a_{ki} b_{kj} - a_{kj} b_{ki}\right) = 0. \end{aligned}$$
(60)

This follows from the antisymmetry of the global sum, each term occurring twice with opposite signs.

1.2 2. Even m

If m is even,

$$\begin{aligned}&\sum _{i=1, j=1}^{N} w_i w_j\prod _{k=1}^m \left( a_{ki} b_{kj} - a_{kj} b_{ki}\right) = 2\sum _{i=1}^{N-1}\sum _{j=i+1}^{N} w_i w_j \prod _{k=1}^m \left( a_{ki} b_{kj} - a_{kj} b_{ki}\right) . \end{aligned}$$
(61)

This follows from the symmetry of the global sum, each term occurring twice with same signs.

1.3 3. \(m=2\)

For \(m=2\), we have a weighted Binet–Cauchy identity:

$$\begin{aligned}&\sum _{i=1}^{N-1} \sum _{j=i+1}^N w_i w_j \left( a_{1i} b_{1j} - a_{1j} b_{1i}\right) \left( a_{2i} b_{2j} - a_{2j} b_{2i}\right) \nonumber \\&\qquad = \sum _i w_i a_{1i} a_{2i} \sum _j w_j b_{1j} b_{2j} - \sum _i w_i a_{1i} b_{2i} \sum _j w_j a_{2j} b_{1j}. \end{aligned}$$
(62)

If \(b_{1i}=b_{2i}\), we have, dropping the index k for the b’s:

$$\begin{aligned}&\sum _{i=1}^{N-1} \sum _{j=i+1}^N w_i w_j \left( a_{1i} b_j - a_{1j} b_i\right) \left( a_{2i} b_j - a_{1j} b_i\right) \nonumber \\&\qquad = \sum _i w_i a_{1i} a_{2i} \sum _j w_j b_j^2 - \sum _i w_i a_{1i} b_i \sum _j w_j a_{2j}b_j. \end{aligned}$$
(63)

If \(a_{1i}=\bar{a}_{2i}\) and \(b_{1i}=\bar{b}_{2i}\), we have a weighted version of Lagrange’s identity:

$$\begin{aligned}&\sum _{i=1}^{N-1} \sum _{j=i+1}^N w_i w_j \left| a_i b_j - a_j b_i\right| ^ 2 = \sum _i w_i |a_i|^2 \sum _j w_j |b_j|^2 - \left| \sum _i w_i a_i b_i\right| ^2. \end{aligned}$$
(64)

For real nonnegative weights \(w_i\), since the left-hand side is nonnegative, a weighted form of Cauchy–Schwarz inequality follows:

$$\begin{aligned} \sum _i w_i |a_i|^2 \sum _j w_j |b_j|^2\ge & {} \left| \sum _i w_i a_i b_i\right| ^2. \end{aligned}$$
(65)

Further, if \(b_i=1\), we have

$$\begin{aligned}&\sum _{i=1}^{N-1} \sum _{j=i+1}^N w_iw_j \left| a_i-a_j \right| ^ 2 = \sum _i w_i|a_i|^2\sum _jw_j -\left| \sum _iw_i a_i \right| ^2. \end{aligned}$$
(66)

For larger even m, it is straightforward to derive further similar equalities and inequalities.

Appendix III

We can calculate the inverse of the axial moment of inertia, \({\mathop {\mathbf {\mathcal I}}\limits ^{\leftrightarrow }}^{-1}\) (or pseudo-inverse \({\mathop {\mathbf {\mathcal I}}\limits ^{\leftrightarrow }}^{\dagger }\) for degenerate cases) with the following procedure working in all configurations (Pfenniger 1994):

  1. 1.

    Calculate the determinant \(\bigl |{\mathop {\mathbf {\mathcal I}}\limits ^{\leftrightarrow }}\bigr |\) with

    $$\begin{aligned} \bigl |{\mathop {\mathbf {\mathcal I}}\limits ^{\leftrightarrow }}\bigr |= & {} {\mathcal I}_{xx} {\mathcal I}_{yy} {\mathcal I}_{zz} + 2 {\mathcal I}_{xy} {\mathcal I}_{yz} {\mathcal I}_{zx} - \left( {\mathcal I}_{xx}{\mathcal I}_{yz}^2 + {\mathcal I}_{yy}{\mathcal I}_{zx}^2 + {\mathcal I}_{zz}{\mathcal I}_{xy}^2 \right) . \end{aligned}$$
    (67)
  2. 2.
    • If \(\bigl |{\mathop {\mathbf {\mathcal I}}\limits ^{\leftrightarrow }}\bigr |\ne 0\), the general case, then

      $$\begin{aligned} {\mathop {\mathbf {\mathcal I}}\limits ^{\leftrightarrow }}^{-1} = \bigl |{\mathop {\mathbf {\mathcal I}}\limits ^{\leftrightarrow }}\bigr |^{-1} \times \left( \begin{array}{lll} {\mathcal I}_{yy} {\mathcal I}_{zz} \!-\! {\mathcal I}_{yz}^2 &{}\quad {\mathcal I}_{yz} {\mathcal I}_{zx} \!-\! {\mathcal I}_{xy}{\mathcal I}_{zz} &{}\quad {\mathcal I}_{xy} {\mathcal I}_{yz} \!-\! {\mathcal I}_{zx}{\mathcal I}_{yy}\\ {\mathcal I}_{yz}{\mathcal I}_{zx} \!-\! {\mathcal I}_{xy}{\mathcal I}_{zz} &{}\quad {\mathcal I}_{zz} {\mathcal I}_{xx} \!-\! {\mathcal I}_{zx}^2 &{}\quad {\mathcal I}_{zx} {\mathcal I}_{xy} \!-\! {\mathcal I}_{yz}{\mathcal I}_{xx}\\ {\mathcal I}_{xy} {\mathcal I}_{yz} \!-\! {\mathcal I}_{zx}{\mathcal I}_{yy} &{}\quad {\mathcal I}_{zx} {\mathcal I}_{xy} \!-\! {\mathcal I}_{yz}{\mathcal I}_{xx} &{}\quad {\mathcal I}_{xx} {\mathcal I}_{yy} \!-\! {\mathcal I}_{xy}^2 \end{array} \right) \end{aligned}$$
      (68)
    • Else, i.e., \(\bigl |{\mathop {\mathbf {\mathcal I}}\limits ^{\leftrightarrow }}\bigr |= 0\), all particles are located along a line:

      1. (a)

        If \(I\ne 0\), then

        $$\begin{aligned} {\mathop {\mathbf {\mathcal I}}\limits ^{\leftrightarrow }}^{\dagger } = I^{-2} {\mathop {\mathbf {\mathcal I}}\limits ^{\leftrightarrow }}, \end{aligned}$$
        (69)
      2. (b)

        Else, i.e., \(I=0\), all the particles are at the origin,

        $$\begin{aligned} {\mathop {\mathbf {\mathcal I}}\limits ^{\leftrightarrow }}^{\dagger } =0. \end{aligned}$$
        (70)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfenniger, D. Angular momentum bounds in particle systems. Celest Mech Dyn Astr 131, 58 (2019). https://doi.org/10.1007/s10569-019-9936-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-019-9936-y

Keywords

Navigation