skip to main content
research-article

Block-Aware Item Similarity Models for Top-N Recommendation

Published:10 September 2020Publication History
Skip Abstract Section

Abstract

Top-N recommendations have been studied extensively. Promising results have been achieved by recent item-based collaborative filtering (ICF) methods. The key to ICF lies in the estimation of item similarities. Observing the block-diagonal structure of the item similarities in practice, we propose a block-diagonal regularization (BDR) over item similarities for ICF. The intuitions behind BDR are as follows: (1) with BDR, item clustering is embedded into the learning of ICF methods; (2) BDR induces sparsity of item similarities, which guarantees recommendation efficiency; and (3) BDR captures in-block transitivity to overcome rating sparsity. By regularizing the item similarity matrix of item similarity models with BDR, we obtain a block-aware item similarity model. Our experimental evaluations on a large number of datasets show that the block-diagonal structure is crucial to the performance of top-N recommendation.

References

  1. Fabio Aiolli. 2013. A preliminary study on a recommender system for the Million Songs Dataset Challenge. In Proceedings of the 4th Italian Information Retrieval Workshop (IIR’13). 73--83. http://ceur-ws.org/Vol-964/paper12.pdf.Google ScholarGoogle Scholar
  2. Marie Al-Ghossein, Talel Abdessalem, and Anthony Barré. 2018. Dynamic local models for online recommendation. In Companion of the 27th World Wide Web Conference (WWW’18). 1419--1423. DOI:https://doi.org/10.1145/3184558.3191586Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. 2017. A generic coordinate descent framework for learning from implicit feedback. In Proceedings of the 26th International Conference on World Wide Web (WWW’17). 1341--1350. DOI:https://doi.org/10.1145/3038912.3052694Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Alex Beutel, Ed Huai-Hsin Chi, Zhiyuan Cheng, Hubert Pham, and John R. Anderson. 2017. Beyond globally optimal: Focused learning for improved recommendations. In Proceedings of the 26th International Conference on World Wide Web (WWW’17). 203--212. DOI:https://doi.org/10.1145/3038912.3052713Google ScholarGoogle Scholar
  5. Deng Cai, Xiaofei He, Xiaoyun Wu, and Jiawei Han. 2008. Non-negative matrix factorization on manifold. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM’08). IEEE, 63--72. DOI:https://doi.org/10.1109/ICDM.2008.57Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Yifan Chen, Pengjie Ren, Yang Wang, and Maarten de Rijke. 2019. Bayesian personalized feature interaction selection for factorization machines. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’19). ACM, New York, NY, 665--674. DOI:https://doi.org/10.1145/3331184.3331196Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Yifan Chen, Yang Wang, Xiang Zhao, Hongzhi Yin, Ilya Markov, and Maarten de Rijke. 2020. Local variational feature-based similarity models for recommending top-N new items. ACM Transactions on Information Systems 38, 2 (2020), Article 12, 33 pages. DOI:https://doi.org/10.1145/3372154Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Yifan Chen, Xiang Zhao, and Maarten de Rijke. 2017. Top-N recommendation with high-dimensional side information via locality preserving projection. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’17). ACM, New York, NY, 985--988. DOI:https://doi.org/10.1145/3077136.3080697Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Yifan Chen, Xiang Zhao, Xuemin Lin, Yang Wang, and Deke Guo. 2019. Efficient mining of frequent patterns on uncertain graphs. IEEE Transactions on Knowledge and Data Engineering 31, 2 (2019), 287--300. DOI:https://doi.org/10.1109/TKDE.2018.2830336Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Yao Cheng, Li’ang Yin, and Yong Yu. 2014. LorSLIM: Low rank sparse linear methods for top-N recommendations. In Proceedings of the 14th IEEE International Conference on Data Mining (ICDM’14). IEEE, Los Alamitos, CA, 90--99. DOI:https://doi.org/10.1109/ICDM.2014.112Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Evangelia Christakopoulou and George Karypis. 2016. Local item-item models for top-N recommendation. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys’16). ACM, New York, NY, USA, 67--74. DOI:https://doi.org/10.1145/2959100.2959185Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Evangelia Christakopoulou and George Karypis. 2018. Local latent space models for top-N recommendation. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD’18). ACM, New York, NY, 1235--1243. DOI:https://doi.org/10.1145/3219819.3220112Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fan R. K. Chung and Fan Chung Graham. 1997. Spectral Graph Theory. Number 92. American Mathematical Society.Google ScholarGoogle Scholar
  14. Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and Shun-Ichi Amari. 2009. Nonnegative Matrix and Tensor Factorizations—Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation. Wiley.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of recommender algorithms on top-N recommendation tasks. In Proceedings of the 4th ACM Conference on Recommender Systems (RecSys’10). ACM, New York, NY, 39--46. DOI:https://doi.org/10.1145/1864708.1864721Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are we really making much progress? A worrying analysis of recent neural recommendation approaches. In Proceedings of the 13th ACM Conference on Recommender Systems (RecSys’17). 101--109. DOI:https://doi.org/10.1145/3298689.3347058Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Mukund Deshpande and George Karypis. 2004. Item-based top-N recommendation algorithms. ACM Transactions on Information Systems 22, 1 (Jan. 2004), 143--177. DOI:https://doi.org/10.1145/963770.963776Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative memory network for recommendation systems. In Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’18). 515--524. DOI:https://doi.org/10.1145/3209978.3209991Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ky Fan. 1949. On a theorem of Weyl concerning eigenvalues of linear transformations I. Proceedings of the National Academy of Sciences 35, 11 (1949), 652--655.Google ScholarGoogle ScholarCross RefCross Ref
  20. Jiashi Feng, Zhouchen Lin, Huan Xu, and Shuicheng Yan. 2014. Robust subspace segmentation with block-diagonal prior. In Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR’14). IEEE, Los Alamitos, CA, 3818--3825. DOI:https://doi.org/10.1109/CVPR.2014.482Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Xue Geng, Hanwang Zhang, Jingwen Bian, and Tat-Seng Chua. 2015. Learning image and user features for recommendation in social networks. In Proceedings of the 2015 International Conference on Computer Vision (ICCV’15). IEEE, Los Alamitos, CA, 4274--4282.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Thomas George and Srujana Merugu. 2005. A scalable collaborative filtering framework based on co-clustering. In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM’05). IEEE, Los Alamitos, CA, 625--628. DOI:https://doi.org/10.1109/ICDM.2005.14Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Luigi Grippo and Marco Sciandrone. 2000. On the convergence of the block nonlinear Gauss–Seidel method under convex constraints. Operations Research Letters 26, 3 (2000), 127--136.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Guibing Guo, Jie Zhang, Zhu Sun, and Neil Yorke-Smith. 2015. LibRec: A Java library for recommender systems. In Proceedings of the 23rd Conference on User Modelling, Adaptation, and Personalization (UMAP’15), Vol. 1388.Google ScholarGoogle Scholar
  25. Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and Tat-Seng Chua. 2018. NAIS: Neural attentive item similarity model for recommendation. IEEE Transactions on Knowledge and Data Engineering 30, 12 (2018), 2354--2366.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web (WWW’17). 173--182. DOI:https://doi.org/10.1145/3038912.3052569Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast matrix factorization for online recommendation with implicit feedback. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’16). ACM, New York, NY, 549--558. DOI:https://doi.org/10.1145/2911451.2911489Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S. Yu. 2018. Leveraging meta-path based context for top-N recommendation with a neural co-attention model. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD’18). ACM, New York, NY, 1531--1540. DOI:https://doi.org/10.1145/3219819.3219965Google ScholarGoogle Scholar
  29. Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for implicit feedback datasets. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM’08). IEEE, Los Alamitos, CA, 263--272. DOI:https://doi.org/10.1109/ICDM.2008.22Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Santosh Kabbur, Xia Ning, and George Karypis. 2013. FISM: Factored item similarity models for top-N recommender systems. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD’13). ACM, New York, NY, 659--667. DOI:https://doi.org/10.1145/2487575.2487589Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Zhao Kang and Qiang Cheng. 2016. Top-N recommendation with novel rank approximation. In Proceedings of the 2016 SIAM International Conference on Data Mining (SDM’16). 126--134. DOI:https://doi.org/10.1137/1.9781611974348.15Google ScholarGoogle ScholarCross RefCross Ref
  32. Zhao Kang, Chong Peng, Ming Yang, and Qiang Cheng. 2016. Top-N recommendation on graphs. In Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM’16). ACM, New York, NY, 2101--2106. DOI:https://doi.org/10.1145/2983323.2983649Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yehuda Koren. 2008. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD’08). ACM, New York, NY, 426--434. DOI:https://doi.org/10.1145/1401890.1401944Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Daniel D. Lee and H. Sebastian Seung. 2001. Algorithms for non-negative matrix factorization. In Advances in Neural Information Processing Systems 13, T. K. Leen, T. G. Dietterich, and V. Tresp (Eds.). MIT Press, Cambridge, MA, 556–562. http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.Google ScholarGoogle Scholar
  35. Joonseok Lee, Samy Bengio, Seungyeon Kim, Guy Lebanon, and Yoram Singer. 2014. Local collaborative ranking. In Proceedings of the 23rd International World Wide Web Conference (WWW’14). 85--96. DOI:https://doi.org/10.1145/2566486.2567970Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Joonseok Lee, Seungyeon Kim, Guy Lebanon, Yoram Singer, and Samy Bengio. 2016. LLORMA: Local low-rank matrix approximation. Journal of Machine Learning Research 17 (2016), Article 15, 24 pages.Google ScholarGoogle Scholar
  37. Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018. Variational autoencoders for collaborative filtering. In Proceedings of the 27th World Wide Web Conference (WWW’18). 689--698. DOI:https://doi.org/10.1145/3178876.3186150Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. C. Lu, J. Feng, Z. Lin, T. Mei, and S. Yan. 2019. Subspace clustering by block diagonal representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 41, 2 (2019), 487--501. DOI:https://doi.org/10.1109/TPAMI.2018.2794348Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and Shuicheng Yan. 2012. Robust and efficient subspace segmentation via least squares regression. In Proceeding of the 12th European Conference on Computer Vision (ECCV’12). 347--360. DOI:https://doi.org/10.1007/978-3-642-33786-4_26Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Julian J. McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics: Understanding rating dimensions with review text. In Proceedings of the 7th ACM Conference on Recommender Systems (RecSys’13). ACM, New York, NY, 165--172. DOI:https://doi.org/10.1145/2507157.2507163Google ScholarGoogle Scholar
  41. Bojan Mohar. 1991. The Laplacian spectrum of graphs. In Graph Theory, Combinatorics, and Applications. Vol. 2. Wiley, 871--898.Google ScholarGoogle Scholar
  42. Xia Ning and George Karypis. 2011. SLIM: Sparse linear methods for top-N recommender systems. In Proceedings of the 11th IEEE International Conference on Data Mining (ICDM’11). IEEE, Los Alamitos, CA, 497--506. DOI:https://doi.org/10.1109/ICDM.2011.134Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Xia Ning and George Karypis. 2012. Sparse linear methods with side information for top-N recommendations. In Proceedings of the 6th ACM Conference on Recommender Systems (RecSys’12). ACM, New York, NY, 155--162. DOI:https://doi.org/10.1145/2365952.2365983Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Mark O’Connor and Jon Herlocker. 1999. Clustering items for collaborative filtering. In Proceedings of the SIGIR Workshop on Recommender Systems. ACM, New York, NY.Google ScholarGoogle Scholar
  45. Steffen Rendle. 2019. Evaluation metrics for item recommendation under sampling. arXiv:1912.02263Google ScholarGoogle Scholar
  46. Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI’09). 452--461.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Francesco Ricci, Lior Rokach, and Bracha Shapira (Eds.). 2015. Recommender Systems Handbook. Springer.Google ScholarGoogle Scholar
  48. Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. 2001. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th International World Wide Web Conference (WWW’10). 285--295. DOI:https://doi.org/10.1145/371920.372071Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Harald Steck. 2019. Embarrassingly shallow autoencoders for sparse data. In Proceedings of the 28th World Wide Web Conference (WWW’19). 3251--3257. DOI:https://doi.org/10.1145/3308558.3313710Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Keqiang Wang, Wayne Xin Zhao, Hongwei Peng, and Xiaoling Wang. 2016. Bayesian probabilistic multi-topic matrix factorization for rating prediction. In Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI’16). 3910--3916. MISSINGGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  51. Yang Wang, Xuemin Lin, Lin Wu, and Wenjie Zhang. 2017. Effective multi-query expansions: Collaborative deep networks for robust landmark retrieval. IEEE Transactions on Image Processing 26, 3 (2017), 1393--1404. DOI:https://doi.org/10.1109/TIP.2017.2655449Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Zengmao Wang, Yuhong Guo, and Bo Du. 2018. Matrix completion with preference ranking for top-N recommendation. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI’18). 3585--3591. DOI:https://doi.org/10.24963/ijcai.2018/498Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. 2016. Collaborative denoising auto-encoders for top-N recommender systems. In Proceedings of the 9th ACM International Conference on Web Search and Data Mining (WSDM’16). ACM, New York, NY, 153--162. DOI:https://doi.org/10.1145/2835776.2835837Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Yao Wu, Xudong Liu, Min Xie, Martin Ester, and Qing Yang. 2016. CCCF: Improving collaborative filtering via scalable user-item co-clustering. In Proceedings of the 9th ACM International Conference on Web Search and Data Mining (WSDM’16). ACM, New York, NY, 73--82. DOI:https://doi.org/10.1145/2835776.2835836Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Xingyu Xie, Xianglin Guo, Guangcan Liu, and Jun Wang. 2018. Implicit block diagonal low-rank representation. IEEE Transactions on Image Processing 27, 1 (2018), 477--489. DOI:https://doi.org/10.1109/TIP.2017.2764262Google ScholarGoogle ScholarCross RefCross Ref
  56. Bin Xu, Jiajun Bu, Chun Chen, and Deng Cai. 2012. An exploration of improving collaborative recommender systems via user-item subgroups. In Proceedings of the 21st World Wide Web Conference (WWW’12). 21--30. DOI:https://doi.org/10.1145/2187836.2187840Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Feng Xue, Xiangnan He, Xiang Wang, Jiandong Xu, Kai Liu, and Richang Hong. 2019. Deep item-based collaborative filtering for top-N recommendation. ACM Transactions on Information Systems 37, 3 (2019), Article 33, 25 pages. DOI:https://doi.org/10.1145/3314578Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Gui-Rong Xue, Chenxi Lin, Qiang Yang, Wensi Xi, Hua-Jun Zeng, Yong Yu, and Zheng Chen. 2005. Scalable collaborative filtering using cluster-based smoothing. In Proceedings of the 28th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’05). ACM, New York, NY, 114--121. DOI:https://doi.org/10.1145/1076034.1076056Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Hilmi Yildirim and Mukkai S. Krishnamoorthy. 2008. A random walk method for alleviating the sparsity problem in collaborative filtering. In Proceedings of the 2nd ACM Conference on Recommender Systems (RecSys’08). ACM, New York, NY, 131--138. DOI:https://doi.org/10.1145/1454008.1454031Google ScholarGoogle Scholar
  60. Yongfeng Zhang, Min Zhang, Yiqun Liu, Shaoping Ma, and Shi Feng. 2013. Localized matrix factorization for recommendation based on matrix block diagonal forms. In Proceedings of the 22nd International World Wide Web Conference (WWW’13). 1511--1520. DOI:https://doi.org/10.1145/2488388.2488520Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Feipeng Zhao and Yuhong Guo. 2016. Improving top-N recommendation with heterogeneous loss. In Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI’16). 2378--2384. http://www.ijcai.org/Abstract/16/339.Google ScholarGoogle Scholar
  62. Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. 2005. Improving recommendation lists through topic diversification. In Proceedings of the 14th International Conference on World Wide Web (WWW’05). 22--32. DOI:https://doi.org/10.1145/1060745.1060754Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Block-Aware Item Similarity Models for Top-N Recommendation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Information Systems
      ACM Transactions on Information Systems  Volume 38, Issue 4
      October 2020
      375 pages
      ISSN:1046-8188
      EISSN:1558-2868
      DOI:10.1145/3402434
      Issue’s Table of Contents

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 September 2020
      • Accepted: 1 July 2020
      • Revised: 1 May 2020
      • Received: 1 December 2019
      Published in tois Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format