Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T19:42:13.677Z Has data issue: false hasContentIssue false

Nanophotonic materials for space applications

Published online by Cambridge University Press:  10 September 2020

Ognjen Ilic*
Affiliation:
Department of Mechanical Engineering, University of Minnesota, USA; ilic@umn.edu
Get access

Abstract

Space exemplifies the ultimate test-bed environment for any materials technology. The harsh conditions of space, with extreme temperature changes, lack of gravity and atmosphere, intense solar and cosmic radiation, and mechanical stresses of launch and deployment, represent a multifaceted set of challenges. The materials we engineer must not only meet these challenges, but they need to do so while keeping overall mass to a minimum and guaranteeing performance over long periods of time with no opportunity for repair. Nanophotonic materials—materials that embody structural variations on a scale comparable to the wavelength of light—offer opportunities for addressing some of these difficulties. Here, we examine how advances in nanophotonics and nanofabrication are enabling ultrathin and lightweight structures with unparalleled ability to shape light–matter interactions over a broad electromagnetic spectrum. From solar panels that can be fabricated in space to applications of light for propulsion, the next generation of lightweight and multifunctional photonic materials stands to both impact existing technologies and pave the way for new space technologies.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article is an invited contribution from the MRS Bulletin Postdoctoral Publication Prize given to Ognjen Ilic, University of Minnesota, at the 2019 MRS Fall Meeting in Boston, Mass.

References

Jones, H., 48th Int. Conf. Environ. Syst. (2018), https://ttu-ir.tdl.org/handle/2346/74082.Google Scholar
Swartwout, M., J. Small Satel2, 213 (2013).Google Scholar
National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Space Studies Board, Committee on Achieving Science Goals with CubeSats, Achieving Science with CubeSats: Thinking Inside the Box (National Academies Press, Washington, DC, 2016).Google Scholar
Sherwood, B., Spangelo, S., Frick, A., Castillo-Rogez, J., Klesh, A., Wyatt, E.J., Reh, K., Baker, J., “Planetary CubeSats Come of Age,” presented at the 66th International Astronautical Congress, Jerusalem, Israel (2015), https://trs.jpl.nasa.gov/bitstream/handle/2014/45903/15-4109_A1b.pdf?sequence=1.Google Scholar
Manchester, Z., Peck, M., “Stochastic Space Exploration with Microscale Spacecraft,” presented at the AIAA Guidance, Navigation and Control Conference, Control Conf., Portland, OR, 2011, https://arc.aiaa.org/doi/pdf/10.2514/6.2011-6648.CrossRefGoogle Scholar
Ghidini, T., Nat. Mater17, 8460 (2018).Google Scholar
Levchenko, I., Bazaka, K., Belmonte, T., Keidar, M., Xu, S., Adv. Mater30, 1802201 (2018).CrossRefGoogle Scholar
“Across the Universe” [Editorial], Nat. Mater17, 845 (2018).CrossRefGoogle Scholar
Koenderink, A.F., Alù, A., Polman, A., Science 348, 516 (2015).CrossRefGoogle Scholar
Meinzer, N., Barnes, W.L., Hooper, I.R., Nat. Photonics 8, 889 (2014).CrossRefGoogle Scholar
Chen, H.-T., Taylor, A.J., Yu, N., Rep. Prog. Phys79, 076401 (2016).CrossRefGoogle Scholar
Geim, A.K., Grigorieva, I.V., Nature 499, 419 (2013).CrossRefGoogle Scholar
Molesky, S., Lin, Z., Piggott, A.Y., Jin, W., Vucković, J., Rodriguez, A.W., Nat. Photonics 12, 659 (2018).CrossRefGoogle Scholar
Bailey, S., Raffaelle, R., in Handbook of Photovoltaic Science and Engineering, Luque, A., Hegedus, S., Eds. (Wiley, Chichester, UK, 2010), vol. 25, pp. 365401.Google Scholar
Campesato, R., Tukiainen, A., Aho, A., Gori, G., Isoaho, R., Greco, E., Guina, M., E3S Web Conf16, 03003 (2017).CrossRefGoogle Scholar
Takamoto, T., Washio, H., Juso, H., 40th IEEE Photovolt. Specialist Conf. 1 (2014), doi:10.1109/PVSC.2014.6924936.Google Scholar
Hubbard, S., Bailey, C., Polly, S., Cress, C.D., Andersen, J., Forbes, D.V., Raffaelle, R.P., J. Nanophotonics 3, 031880 (2009).CrossRefGoogle Scholar
Suarez, F., Liu, T., Sukiasyan, A., Lang, J., Pickett, E., Lucow, E., Bilir, T., Chary, S., Roucka, R., Aeby, I., Zhang, L., Siala, S., 11th European Space Power Conf. 16, 03006 (2017).Google Scholar
Kim, D., Jung, H.J., Park, I.J., Larson, B.W., Dunfield, S.P., Xiao, C., Kim, J., Tong, J., Boonmongkolras, P., Ji, S.G., Zhang, F., Pae, S.R., Kim, M., Kang, S.B., Dravid, V., Berry, J.J., Kim, J.Y., Zhu, K., Kim, D.H., Shin, B., Science 368, 155 (2020).CrossRefGoogle Scholar
Kaltenbrunner, M., Adam, G., Głowacki, E.D., Drack, M., Schwödiauer, R., Leonat, L., Apaydin, D.H., Groiss, H., Scharber, M.C., White, M.S., Sariciftci, N.S., Bauer, S., Nat. Mater14, 1032 (2015).CrossRefGoogle Scholar
Cardinaletti, I., Vangerven, T., Nagels, S., Cornelissen, R., Schreurs, D., Hruby, J., Vodnik, J., Devisscher, D., Kesters, J., D'Haen, J., Franquet, A., Spampinato, V., Conard, T., Maes, W., Deferme, W., Manca, J.V., Sol. Energy Mater. Sol. Cells 182, 121 (2018).CrossRefGoogle Scholar
Wang, Y., Wang, P., Zhou, X., Li, C., Li, H., Hu, X., Li, F., Liu, X., Li, M., Song, Y., Adv. Energy Mater8, 1702960 (2018).CrossRefGoogle Scholar
Paetzold, U.W., Qiu, W., Finger, F., Poortmans, J., Cheyns, D., Appl. Phys. Lett106, 173101 (2015).CrossRefGoogle Scholar
Taylor, E.W., Pirich, R., Weir, J., Leyble, D., Chu, S., Taylor, L.R., Velderrain, M., Malave, V., Barahman, M., Lyons, A., 35th IEEE Photovolt. Specialists Conf. 002636 (2010), doi:10.1109/PVSC.2010.5617191.Google Scholar
Miyazawa, Y., Ikegami, M., Chen, H.-W., Ohshima, T., Imaizumi, M., Hirose, K., Miyasaka, T., iScience 2, 148 (2018).CrossRefGoogle Scholar
Huang, J., Kelzenberg, M.D., Espinet-Gonzales, P., Mann, C., Walker, D., Naqavi, A., Vaidya, N., Warmann, E., Atwater, H.A.IEEE 44th Photovolt. Specialist Conf. (PVSC), pp. 12481252 (2017).Google Scholar
Garnett, E.C., Brongersma, M.L., Cui, Y., McGehee, M.D., Annu. Rev. Mater. Res41, 269 (2011).CrossRefGoogle Scholar
Espinet-Gonzalez, P., Barrigón, E., Chen, Y., Otnes, G., Vescovi, G., Mann, C., Lloyd, J.V., Walker, D., Kelzenberg, M.D., Åberg, I., Borgström, M., Samuelson, L., Atwater, H.A., IEEE J. Photovolt. 10, 502 (2020).CrossRefGoogle Scholar
Glaser, P.E., Science 162, 857 (1968).CrossRefGoogle Scholar
Jaffe, P., in Future Energy, 3rd ed. (Third Edition), Letcher, T.M., Ed. (Elsevier, Oxford, UK, 2020), pp. 519542.CrossRefGoogle Scholar
Caltech Space Solar Power Project, https://www.spacesolar.caltech.edu.Google Scholar
Kelzenberg, M.D., Espinet-Gonzalez, P., Vaidya, N., Roy, T.A., Warmann, E.C., Naqavi, A., Loke, S.P., Huang, J., Vinogradova, T.G., Messer, A.J., Leclerc, C., Gdoutos, E.E., Royer, F., Hajimiri, A., Pellegrino, S., Atwater, H.A., 44th IEEE Photovolt. Specialist Conf. 558 (2017), doi:10.1109/PVSC.2017.8366621.Google Scholar
Gdoutos, E., Leclerc, C., Royer, F., Kelzenberg, M.D., Warmann, E.C., Espinet-Gonzalez, P., Vaidya, N., Bohn, F., Abiri, B., Hashemi, M.R., Gal-Katziri, M., Fikes, A., Atwater, H., Hajimiri, A., Pellegrino, S., AIAA Spacecr. Struct. Conf. (2018), doi:10.2514/6.2018-2202.Google Scholar
Naqavi, A., Loke, S.P., Kelzenberg, M.D., Callahan, D.M., Tiwald, T., Warmann, E.C., Espinet-González, P., Vaidya, N., Roy, T.A., Huang, J.-S., Vinogradova, T.G., Atwater, H.A., Opt. Express 26, 18545 (2018).CrossRefGoogle Scholar
Warmann, E.C., Espinet-Gonzalez, P., Vaidya, N., Loke, S., Naqavi, A., Vinogradova, T., Kelzenberg, M., Leclerc, C., Gdoutos, E., Pellegrino, S., Atwater, H.A., Acta Astronaut170, 443 (2020).CrossRefGoogle Scholar
Angelo, J.A., Buden, D., Space Nuclear Power (Orbit Book, Malabar, FL, 1985).Google Scholar
Rinehart, G.H., Prog. Nucl. Energy 39, 305 (2001).CrossRefGoogle Scholar
Petsagkourakis, I., Tybrandt, K., Crispin, X., Ohkubo, I., Satoh, N., Mori, T., Sci. Technol. Adv. Mater19, 836 (2018).Google Scholar
Sakakibara, R., Stelmakh, V., Chan, W.R., Ghebrebrhan, M., Joannopoulos, J.D., Soljacic, M., Čelanović, I., J. Parenter. Enteral Nutr9, 032713 (2019).Google Scholar
Baranov, D.G., Xiao, Y., Nechepurenko, I.A., Krasnok, A., Alù, A., Kats, M.A., Nat. Mater. (2019), doi:10.1038/s41563–019–0363-y.Google Scholar
Li, W., Fan, S., Opt. Express 26, 15995 (2018).CrossRefGoogle Scholar
Lenert, A., Bierman, D.M., Nam, Y., Chan, W.R., Celanovic, I., Soljačić, M., Wang, E.N., Nat. Nanotechnol9, 126 (2014).CrossRefGoogle Scholar
Ilic, O., Bermel, P., Chen, G., Joannopoulos, J.D., Celanovic, I., Soljačić, M., Nat. Nanotechnol11, 320 (2016).CrossRefGoogle Scholar
Bermel, P., Ghebrebrhan, M., Chan, W., Yeng, Y.X., Araghchini, M., Hamam, R., Marton, C.H., Jensen, K.F., Soljačić, M., Joannopoulos, J.D., Johnson, S.G., Celanovic, I., Opt. Express 18, A314 (2010).CrossRefGoogle Scholar
Rinnerbauer, V., Ndao, S., Yeng, Y.X., Chan, W.R., Senkevich, J.J., Joannopoulos, J.D., Soljačić, M., Celanovic, I., Energy Environ. Sci5, 8815 (2012).CrossRefGoogle Scholar
Chan, W.R., Bermel, P., Pilawa-Podgurski, R.C.N., Marton, C.H., Jensen, K.F., Senkevich, J.J., Joannopoulos, J.D., Soljačić, M., Celanovic, I., Proc. Natl. Acad. Sci. U.S.A110, 5309 (2013).CrossRefGoogle Scholar
Asano, T., Suemitsu, M., Hashimoto, K., De Zoysa, M., Shibahara, T., Tsutsumi, T., Noda, S., Sci. Adv2, e1600499 (2016).Google Scholar
Arpin, K.A., Losego, M.D., Cloud, A.N., Ning, H., Mallek, J., Sergeant, N.P., Zhu, L., Yu, Z., Kalanyan, B., Parsons, G.N., Girolami, G.S., Abelson, J.R., Fan, S., Braun, P.V., Nat. Commun4 (2013), doi:10.1038/ncomms3630.Google Scholar
Lin, S.Y., Moreno, J., Fleming, J.G., Appl. Phys. Lett83, 380 (2003).CrossRefGoogle Scholar
Rinnerbauer, V., Yeng, Y.X., Chan, W.R., Senkevich, J.J., Joannopoulos, J.D., Soljačić, M., Celanovic, I., Opt. Express 21, 11482 (2013).CrossRefGoogle Scholar
Rinnerbauer, V., Lausecker, E., Schäffler, F., Reininger, P., Strasser, G., Geil, R.D., Joannopoulos, J.D., Soljačić, M., Celanovic, I., Optica 2, 743 (2015).CrossRefGoogle Scholar
Omair, Z., Scranton, G., Pazos-Outón, L.M., Xiao, T.P., Steiner, M.A., Ganapati, V., Peterson, P.F., Holzrichter, J., Atwater, H., Yablonovitch, E., Proc. Natl. Acad. Sci. U.S.A116, 15356 (2019).CrossRefGoogle Scholar
Harder, N.-P., Würfel, P., Semicond. Sci. Technol18, S151 (2003).CrossRefGoogle Scholar
Wilt, D., Chubb, D., Wolford, D., Magari, P., Crowley, C., AIP Conf. Proc890, 335 (2007).CrossRefGoogle Scholar
Datas, A., Martí, A., Sol. Energy Mater. Sol. Cells 161, 285 (2017).CrossRefGoogle Scholar
Wang, X., Chan, W.R., Stelmakh, V., Soljacic, M., Joannopoulos, J.D., Celanovic, I., Fisher, P.H., J. Phys. Conf. Ser660, 012034 (2015).CrossRefGoogle Scholar
Sun, K., Riedel, C.A., Wang, Y., Urbani, A., Simeoni, M., Mengali, S., Zalkovskij, M., Bilenberg, B., de Groot, C.H., Muskens, O.L., ACS Photonics 5, 495 (2018).CrossRefGoogle Scholar
Sun, K., Riedel, C.A., Urbani, A., Simeoni, M., Mengali, S., Zalkovskij, M., Bilenberg, B., de Groot, C.H., Muskens, O.L., ACS Photonics 5, 2280 (2018).CrossRefGoogle Scholar
Ono, M., Chen, K., Li, W., Fan, S., Opt. Express 26, A777 (2018).CrossRefGoogle Scholar
Wu, S.-H., Chen, M., Barako, M.T., Jankovic, V., Hon, P.W.C., Sweatlock, L.A., Povinelli, M.L., Optica 4, 1390 (2017).CrossRefGoogle Scholar
Rensberg, J., Zhang, S., Zhou, Y., McLeod, A.S., Schwarz, C., Goldflam, M., Liu, M., Kerbusch, J., Nawrodt, R., Ramanathan, S., Basov, D.N., Capasso, F., Ronning, C., Kats, M.A., Nano Lett16, 1050 (2016).CrossRefGoogle Scholar
Forward, R.L., “Pluto—The Gateway to the Stars,” Missiles and Rockets 10, 26 (1962).Google Scholar
Marx, G., Nature 211, 22 (1966).CrossRefGoogle Scholar
Redding, J.L., Nature 213, 588 (1967).CrossRefGoogle Scholar
Maiman, T.H., Nature 187, 493 (1960).CrossRefGoogle Scholar
Myrabo, L., Messitt, D., Mead, F. Jr., 36th AIAA Aerospace Sciences Meeting and Exhibit (1998), doi:dx.doi.org/10.2514/6.1998-1001.Google Scholar
Benford, J., IEEE Trans. Plasma Sci. 36, 569 (2008).CrossRefGoogle Scholar
Tsuda, Y., Mori, O., Funase, R., Sawada, H., Yamamoto, T., Saiki, T., Endo, T., Kawaguchi, J., Acta Astronaut69, 833 (2011).CrossRefGoogle Scholar
Levchenko, I., Bazaka, K., Mazouffre, S., Xu, S., Nat. Photonics 12, 649 (2018).CrossRefGoogle Scholar
Bergstue, G., Fork, R., Reardon, P., Acta Astronaut96, 97 (2014).CrossRefGoogle Scholar
Phipps, C., Birkan, M., Bohn, W., Eckel, H.-A., Horisawa, H., Lippert, T., Michaelis, M., Rezunkov, Y., Sasoh, A., Schall, W., Scharring, S., Sinko, J., J. Propul. Power 26, 609 (2010).CrossRefGoogle Scholar
Benford, J.N., Dickinson, R., Proc. SPIE 2557, Intense Microwave Pulses III (1995), doi:dx.doi.org/10.1117/12.218549.Google Scholar
Parkin, K.L.G., DiDomenico, L.D., “The Microwave Thermal Thruster Concept,” AIP Conf. Proc. (2004), https://aip.scitation.org/doi/abs/10.1063/1.1721020.CrossRefGoogle Scholar
Daido, H., Nishiuchi, M., Pirozhkov, A.S., Rep. Prog. Phys75, 056401 (2012).CrossRefGoogle Scholar
Macchi, A., Borghesi, M., Passoni, M., Rev. Mod. Phys85, 751 (2013).Google Scholar
Phipps, C., Bohn, W., Lippert, T., Sasoh, A., Schall, W., Sinko, J., AIP Conf. Proc1278, 710 (2010).CrossRefGoogle Scholar
Rovey, J.L., Friz, P.D., Hu, C., Glascock, M.S., Yang, X., J. Spacecr. Rockets 52, 1163 (2015).CrossRefGoogle Scholar
England, R.J., IEEE J. Sel. Top. Quantum Electron22, 171 (2016).CrossRefGoogle Scholar
Johnson, L., Young, R., Barnes, N., Friedman, L., Lappas, V., McInnes, C., Int. J. Aeronaut. Space Sci. 13, 421 (2012).CrossRefGoogle Scholar
Mansell, J., Spencer, D.A., Plante, B., Diaz, A., Fernandez, M., Bellardo, J., Betts, B., Nye, B., in AIAA Scitech 2020 Forum (American Institute of Aeronautics and Astronautics, 2020), AIAA SciTech Forum, doi:10.2514/6.2020-2177.CrossRefGoogle Scholar
Swartzlander, G., Johnson, L., Betts, B., Opt. Photonics News 31, 30 (2020).CrossRefGoogle Scholar
Johnson, L., Castillo-Rogez, J., Dervan, J., McNutt, L., “Near Earth Asteroid (NEA) Scout” (2017), https://ntrs.nasa.gov/search.jsp?R=20170001499.Google Scholar
Sun, Z., Martinez, A., Wang, F., Nat. Photonics 10, 227 (2016).CrossRefGoogle Scholar
Swartzlander, G.A., J. Opt. Soc. Am. B 34, C25 (2017).CrossRefGoogle Scholar
Achouri, K., Cespedes, O.V., Caloz, C., Solar “Meta-Sails for Agile Optical Force Control,” IEEE Trans. Antennas Propag67, 6924 (2019).CrossRefGoogle Scholar
Ilic, O., Atwater, H.A., Nat. Photonics 13, 289 (2019).CrossRefGoogle Scholar
Siegel, J., Wang, A.Y., Menabde, S.G., Kats, M.A., Jang, M.S., Brar, V.W., ACS Photonics 6, 2032 (2019).CrossRefGoogle Scholar
Srivastava, P.R., Chu, Y.-J.L., G.A. Opt. Lett44, 3082 (2019).Google Scholar
Davoyan, A., “Novel Photonic Materials and Nanofabrications II,” presented at the Materials Research Society Fall Meeting, Boston, 2019.Google Scholar
Chu, Y.-J.L., Tabiryan, N.V., Swartzlander, G.A., Phys. Rev. Lett123, 244302 (2019).CrossRefGoogle Scholar
Salary, M.M., Mosallaei, H.Laser Photonics Rev5, 1900311 (2020).CrossRefGoogle Scholar
Guillochon, J., Loeb, A., Astrophys. J. Lett. 811, L20 (2015).CrossRefGoogle Scholar
Lubin, P., J. Br. Interplanet. Soc. 69, 40 (2016).Google Scholar
Parkin, K.L.G., Acta Astronaut. 152, 370 (2018).CrossRefGoogle Scholar
Landis, G.A., “Optics and Materials Considerations for a Laser-Propelled Lightsail,” presented at the 40th Congress of the International Astronautical Federation (Malaga, Spain, 1989).Google Scholar
Atwater, H.A., Davoyan, A.R., Ilic, O., Jariwala, D., Sherrott, M.C., Went, C.M., Whitney, W.S., Wong, J., Nat. Mater17, 861 (2018).CrossRefGoogle Scholar
Ilic, O., Went, C.M., Atwater, H.A., Nano Lett18, 5583 (2018).CrossRefGoogle Scholar
Srinivasan, P., Hughes, G.B., Lubin, P., Zhang, Q., Madajian, J., Brashears, T., Kulkarni, N., Cohen, A., Griswold, J., Proc. SPIE 9981, Planetary Defense and Space Environment Applications (2016) 998105, doi:10.1117/12.2237715.CrossRefGoogle Scholar
Manchester, Z., Loeb, A., Astrophys. J837, L20 (2017).CrossRefGoogle Scholar
Myilswamy, K.V., Krishnan, A., Povinelli, M.L., Opt. Express 28, 8223 (2020).CrossRefGoogle Scholar
Postberg, F., Khawaja, N., Abel, B., Choblet, G., Glein, C.R., Gudipati, M.S., Henderson, B.L., Hsu, H.-W., Kempf, S., Klenner, F., Moragas-Klostermeyer, G., Magee, B., Nölle, L., Perry, M., Reviol, R., Schmidt, J., Srama, R., Stolz, F., Tobie, G., Trieloff, M., Waite, J.H., Nature 558, 564 (2018).CrossRefGoogle Scholar
Meech, K.J., Weryk, R., Micheli, M., Kleyna, J.T., Hainaut, O.R., Jedicke, R., Wainscoat, R.J., Chambers, K.C., Keane, J.V., Petric, A., Denneau, L., Magnier, E., Berger, T., Huber, M.E., Flewelling, H., Waters, C., Schunova-Lilly, E., Chastel, S., Nature 552, 378 (2017).CrossRefGoogle Scholar
Gruneisen, M.T., Sickmiller, B.A., Flanagan, M.B., Black, J.P., Stoltenberg, K.E., Duchane, A.W., Opt. Eng55, 026104 (2016).Google Scholar
Takenaka, H., Carrasco-Casado, A., Fujiwara, M., Kitamura, M., Sasaki, M., Toyoshima, M., Nat. Photonics 11, 502 (2017).CrossRefGoogle Scholar
Liao, S.-K., Yong, H.-L., Liu, C., Shentu, G.-L., Li, D.-D., Lin, J., Dai, H., Zhao, S.-Q., Li, B., Guan, J.-Y., Chen, W., Gong, Y.-H., Li, Y., Lin, Z.-H., Pan, G.-S., Pelc, J.S., Fejer, M.M., Zhang, W.-Z., Liu, W.-Y., Yin, J., Ren, J.-G., Wang, X.-B., Zhang, Q., Peng, C.-Z., Pan, J.-W., Nat. Photonics 11, 509 (2017).CrossRefGoogle Scholar
Guo, L.J., Adv. Mater19, 495 (2007).CrossRefGoogle Scholar
Kobrin, B., Barnard, E.S., Brongersma, M.L., Kwak, M.K., Guo, L.J., Proc. SPIE 8249, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V (2012), vol. 8249, p. 824900.Google Scholar