Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T09:06:36.094Z Has data issue: false hasContentIssue false

Reassembling Transformations for Robot Manipulators Characterised Using Network Theoretic and Clifford-Algebraic Methods

Published online by Cambridge University Press:  10 September 2020

Sudharsan Thiruvengadam*
Affiliation:
University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia BlueStem Pty. Ltd., 128 Parry Avenue, Bull Creek, Perth, WA 6149, Australia
Jei Shian Tan
Affiliation:
BlueStem Pty. Ltd., 128 Parry Avenue, Bull Creek, Perth, WA 6149, Australia
Karol Miller
Affiliation:
University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
*
*Corresponding author. E-mail: dan.thiru@bluestem.com.au

Summary

A robotic manipulator’s classical mechanical capabilities are governed by the design parameters (mass, geometry, dimensions, etc.) of its kinematic pairs and its architecture (number of limbs, degrees of freedom, actuation ability, etc.). Using Clifford-Algebraic and network theoretic methods, this work presents a novel-theoretical framework which allows any two robot architectures and design parameters to be mathematically related to one another through combinations of discrete operators or ‘reassembling transformations’. Two theoretical case studies involving a 6R manipulator and Klann linkage are furnished in this work.

Type
Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yim, M., Duff, D. and Roufas, K., “PolyBot: A Modular Reconfigurable Robot” Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), San Francisco, CA, USA, vol. 1 (2000) pp. 514520.Google Scholar
Kamimura, A., Murata, S., Yoshida, E., Kurokawa, H., K. Tomita and S. Kokaji “Research on self-reconfigurable modular robot system,” Exp. Reconfiguration Locomotion Several Modules. JSMET 68(667), 886892 (2002).10.1299/kikaic.68.886CrossRefGoogle Scholar
Prabakaran, V., Elara, M. R., T. Pathmakumar and S. Nansai “Floor cleaning robot with reconfigurable mechanism,” Autom. Constr. 91, 155165 (2018).Google Scholar
Sarabandi, S., Grosch, P., Porta, J. M. and Thomas, F., “A Reconfigurable Asymmetric 3-UPU Parallel Robot,” 2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR) (2018) pp. 18.Google Scholar
Zarrouk, D. and Yehezkel, L., “Rising STAR: A highly reconfigurable sprawl tuned robot,” IEEE Robot. Autom. Lett. 3(3), 18881895 (2018).10.1109/LRA.2018.2805165CrossRefGoogle Scholar
Parrott, C., T. J. Dodd and R. Groß, “HyMod: A 3-DOF Hybrid Mobile and Self-Reconfigurable Modular Robot and its Extensions,” In: Distributed Autonomous Robotic Systems (Springer, Cham, 2018) pp. 401414.CrossRefGoogle Scholar
Liu, C., Whitzer, M. and Yim, M., “A distributed reconfiguration planning algorithm for modular robots,” IEEE Robot. Autom. Lett. 4(4), 42314238 (2019).CrossRefGoogle Scholar
Tosun, T., Jing, G., Kress-Gazit, H. and Yim, M., “Computer-Aided Compositional Design and Verification for Modular Robots,” In: Robotics Research (Springer, Cham, 2018) pp. 237252.10.1007/978-3-319-51532-8_15CrossRefGoogle Scholar
Jing, G., Tosun, T., Yim, M. and Kress-Gazit, H., “Accomplishing high-level tasks with modular robots,” Auton. Robots 42(7), 13371354 (2018).CrossRefGoogle Scholar
Yao, M., Belke, C. H., Cui, H. and Paik, J., “A reconfiguration strategy for modular robots using origami folding,” Int. J. Robot. Res. 38(1), 7389 (2019).CrossRefGoogle Scholar
Vucina, D. and Freudenstein, F., “An application of graph theory and nonlinear programming to the kinematic synthesis of mechanisms,” Mech. Mach. Theory 26(6), 553563 (1991).CrossRefGoogle Scholar
Ding, H., Zhao, J. and Huang, Z., “Unified structural synthesis of planar simple and multiple joint kinematic chains,” Mech. Mach. Theory 45(4), 555568 (2010).10.1016/j.mechmachtheory.2009.10.012CrossRefGoogle Scholar
Mruthyunjaya, T., “Structural synthesis by transformation of binary chains,” Mech. Mach. Theory 14(4), 221231 (1979).10.1016/0094-114X(79)90009-0CrossRefGoogle Scholar
Alvarado, R. R. and Castañeda, E. C., “Type Synthesis of Kinematically Redundant Parallel Manipulators Based on the HEXA Parallel Robot,IFToMM Symposium on Mechanism Design for Robotics (Springer, Cham, 2018) pp. 227234.Google Scholar
Newman, M., Networks (Oxford University Press, Oxford, UK, 2010).10.1093/acprof:oso/9780199206650.001.0001CrossRefGoogle Scholar
Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E. and Chirikjian, G., “Modular self-reconfigurable robot systems,” IEEE Robot. Autom. Mag. 14(1), 4352 (2007).10.1109/MRA.2007.339623CrossRefGoogle Scholar
Li, D., Zhang, Z. and McCarthy, J., “A constraint graph representation of metamorphic linkages,” Mech. Mach. Theory 46(2), 228238 (2011).CrossRefGoogle Scholar
Dai, J. and Rees, J. J., “Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds,” Proceedings of 25th ASME Biennial Mechanisms and Robotics Conference (1999) pp. 375382.Google Scholar
Zou, Q., Zhang, D. and Luo, X., “Type Synthesis and Application of a Class of Single DOF Parallel Mechanisms with One Constraint Couple” 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (2019) pp. 295300.Google Scholar
Ghosal, A., “Manipulator Kinematics,” In: Handbook of Manufacturing Engineering and Technology (2015) pp. 17771808.Google Scholar
Hestenes, D. and Sobczyk, G., Clifford Algebra to Geometric Calculus (Springer, Netherlands, 1984).CrossRefGoogle Scholar
Doran, C. and Lasenby, A., Geometric Algebra for Physicists (Cambridge University Press, Cambridge, 2003).CrossRefGoogle Scholar
Lokhande, N. G. and Emche, V. B., “Mechanical spider by using Klann mechanism,” Int. J. Mech. Eng. Comput. Appl. 1(5), 1316 (2013).Google Scholar