Skip to main content
Log in

Experimental and theoretical analysis of equilibrium segregation and radiation-induced segregation of Cr at grain boundaries in a reduced activation ferritic/martensitic (RAFM) steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Helium ion irradiation at 350 °C was performed to study equilibrium segregation and radiation-induced segregation (RIS) of Cr at grain boundaries in reduced activation ferritic/martensitic steels. Cr concentration at grain boundary was measured by scanning transmission electron microscopy with an energy-dispersive spectrometer. The measured Cr concentration at grain boundaries in heat treated zone was 11.7 and 12.8 wt.% in irradiated zone, respectively, which matched well to the calculated results from Mclean and modified Perk model. Equilibrium segregation and RIS of Cr mechanisms were theoretically analysed. The analysis indicates that as temperature rises, equilibrium Cr segregation decreases monotonically, while RIS of Cr has a bell-shape profile, which increases first and then decreases. It is also shown that at low and high temperatures, equilibrium segregation of Cr is higher than that of RIS; at intermediate temperatures, equilibrium Cr segregation is lower than RIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.J. Zinkle, J.T. Busby, Mater. Today 12 (2009) No. 11, 12–19.

    Google Scholar 

  2. P. Yvon, M. Le Flem, C. Cabet, J.L. Seran, Nucl. Eng. Des. 294 (2015) 161–169.

    Google Scholar 

  3. P. Yvon, F. Carré, J. Nucl. Mater. 385 (2009) 217–222.

    Google Scholar 

  4. L.D. Xia, W.B. Liu, H.P. Liu, J.H. Zhang, H. Chen, Z.G. Yang, C. Zhang, Nucl. Eng. Technol. 50 (2018) 132–139.

    Google Scholar 

  5. J.X. Shang, X.D. Zhao, F.H. Wang, C.Y. Wang, H.B. Xu, Comput. Mater. Sci. 38 (2006) 217–222.

    Google Scholar 

  6. W. Wang, G. Xu, S. Liu, Mater. Res. Exp. 6 (2019) 116555.

    Google Scholar 

  7. E.A. Marquis, R. Hu, T. Rousseau, J. Nucl. Mater. 413 (2011) 1–4.

    Google Scholar 

  8. Z. Lu, R.G. Faulkner, N. Sakaguchi, H. Kinoshita, H. Takahashi, P.E.J. Flewitt, J. Nucl. Mater. 351 (2006) 155–161.

    Google Scholar 

  9. K.G. Field, B.D. Miller, H.J.M. Chichester, K. Sridharan, T.R. Allen, J. Nucl. Mater. 445 (2014) 143–148.

    Google Scholar 

  10. K.G. Field, L.M. Barnard, C.M. Parish, J.T. Busby, D. Morgan, T.R. Allen, J. Nucl. Mater. 435 (2013) 172–180.

    Google Scholar 

  11. O. Senninger, F. Soisson, E. Martínez, M. Nastar, C.C. Fu, Y. Bréchet, Acta Mater. 103 (2016) 1–11.

    Google Scholar 

  12. Z. Lu, R.G. Faulkner, G. Was, B.D. Wirth, Scripta Mater. 58 (2008) 878–881.

    Google Scholar 

  13. J.P. Wharry, G.S. Was, J. Nucl. Mater. 442 (2013) 7–16.

    Google Scholar 

  14. G.S. Was, J.P. Wharry, B. Frisbie, B.D. Wirth, D. Morgan, J.D. Tucker, T.R. Allen, J. Nucl. Mater. 411 (2011) 41–50.

    Google Scholar 

  15. D. Mclean, Grain boundaries in metals, Oxford University, London, UK, 1957.

    Google Scholar 

  16. P. Lejček, S. Hofmann, Acta Mater. 170 (2019) 253–267.

    Google Scholar 

  17. P. Lejček, M. Šob, V. Paidar, Prog. Mater. Sci. 87 (2017) 83–139.

    Google Scholar 

  18. R.A. Johnson, N.Q. Lam, Phys. Rev. B 13 (1976) 4364–4375.

    Google Scholar 

  19. A.D. Marwick, J. Nucl. Mater. 135 (1985) 68–76.

    Google Scholar 

  20. A.D. Marwick, R.C. Piller, M.E. Horton, Dimensional stability and mechanical behaviour of irradiated metals and alloys, British Nuclear Energy Society, London, UK, 1984.

    Google Scholar 

  21. A.D. Marwick, J. Phys. F Met. Phys. 8 (1978) 1849–1861.

    Google Scholar 

  22. S.M. Murphy, J. Nucl. Mater. 168 (1989) 31–42.

    Google Scholar 

  23. S.M. Murphy, J.M. Perks, J. Nucl. Mater. 171 (1990) 360–372.

    Google Scholar 

  24. J.M. Perks, S.M. Murphy, Materials for nuclear reactor core applications, British Nuclear Energy Society, London, UK, 1987.

    Google Scholar 

  25. T.R. Allen, G.S. Was, Acta Mater. 46 (1998) 3679–3691.

    Google Scholar 

  26. T.R. Allen, J.T. Busby, G.S. Was, E.A. Kenik, J. Nucl. Mater. 255 (1998) 44–58.

    Google Scholar 

  27. T.R. Allen, G.S. Was, E.A. Kenik, J. Nucl. Mater. 244 (1997) 278–294.

    Google Scholar 

  28. J.P. Wharry, G.S. Was, Acta Mater. 65 (2014) 42–55.

    Google Scholar 

  29. S.H. Song, T.D. Xu, J. Mater. Sci. 29 (1994) 61–66.

    Google Scholar 

  30. P. Ševc, J. Janovec, M. Koutník, A. Výrostková, Acta Metall. Mater. 43 (1995) 251–258.

    Google Scholar 

  31. T. Hashimoto, Y. Isobe, N. Shigenaka, J. Nucl. Mater. 225 (1995) 108–116.

    Google Scholar 

  32. C.A. English, S.M. Murphy, J.M. Perks, J. Chem. Soc. Faraday Trans. 86 (1990) 1263–1271.

    Google Scholar 

  33. S.M. Murphy, J. Nucl. Mater. 182 (1991) 73–86.

    Google Scholar 

  34. P. Lejček, Grain boundary segregation in metals, Springer, Berlin, Germany, 2010.

    Google Scholar 

  35. Y.J. Hu, Y. Wang, W.Y. Wang, K.A. Darling, L.J. Kecskes, Z.K. Liu, Comput. Mater. Sci. 171 (2020) 109271.

    Google Scholar 

  36. Z. Xu, S. Tanaka, M. Kohyama, J. Phys. Condens. Matter 31 (2019) 115001.

    Google Scholar 

  37. H.A. Murdoch, C.A. Schuh, J. Mater. Res. 28 (2013) 2154–2163.

    Google Scholar 

  38. R. Hu, G.D.W. Smith, E.A. Marquis, Acta Mater. 61 (2013) 3490–3498.

    Google Scholar 

  39. J. Pelleg, Solid mechanics and its applications—Diffusion in ceramics, Springer, Cham, Switzerland, 2016.

    Google Scholar 

  40. G.S. Was, Fundamentals of radiation materials science metals and alloys, 2nd ed., Springer, New York, USA, 2007.

    Google Scholar 

  41. M.Z. Zhao, P.P. Liu, Y.M. Zhu, F.R. Wan, Z.B. He, Q. Zhan, J. Nucl. Mater. 466 (2015) 491–495.

    Google Scholar 

  42. P.P. Liu, M.Z. Zhao, Y.M. Zhu, J.W. Bai, F.R. Wan, Q. Zhan, J. Alloy. Compd. 579 (2013) 599–605.

    Google Scholar 

Download references

Acknowledgements

C. Zhang acknowledges financial support from the National Natural Science Foundation of China (Grant No. 51771097), Tsinghua University Initiative Scientific Research Program, the National Key Research and Development Plan (Grant No. 2017YFB0305201) and the Science Challenge Project (Grant No. TZ2018004). The authors acknowledge the help from 1300 kV ECR experimental platform in the National Laboratory of Heavy-ion Accelerators in Lanzhou, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Ld., Chen, H., Yang, Zg. et al. Experimental and theoretical analysis of equilibrium segregation and radiation-induced segregation of Cr at grain boundaries in a reduced activation ferritic/martensitic (RAFM) steel. J. Iron Steel Res. Int. 28, 445–452 (2021). https://doi.org/10.1007/s42243-020-00484-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00484-z

Keywords

Navigation