Skip to main content
Log in

Analysis of the Effect of Transmembrane Pressure on the Change in the Structural and Transport Properties of Active and Drainage Layers of Composite Films UPM-50 and UPM-100

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Results are presented from investigating active and drainage layers of composite films (membranes) UPM-50 and UPM-100 before and after exposure to transmembrane pressure by means of IR spectra of reflection, X-ray scattering, and raster electron microscopy. It is found that changes in the IR spectrum of the working sample are caused by the destruction of weak bonds of C=O···H–N amide fragments of the polysulfonamide film. A drop in (C=O) vibration frequency ν by Δν = 20 cm−1 indicates redistribution of the electron density between C=O-groups and benzene rings as a result of the inductive effect of coupling, which results in the formation of charged functional groups CO. The presence of CO groups fragments a new supramolecular structure whose stability due to the dipole–dipole interaction of carbonyl anions. X-ray scattering of the initial and working samples in the 10°–35° range of angles 2θ is determined by three intense reflections at angles 2θ ~ 17.23°, 22.24°, 25.41° from crystallographic planes ((010), (100), and (110)) corresponding to the crystalline structure of lavsan (polyethylene terephthalate). A comparative analysis of the reduced intensities of reflections from crystallographic planes (010), (100) and the sizes of lamellas indicates that transmembrane pressure initiates conformational rearrangement of crystallites with crystallographic axis b oriented parallel to the film plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. N. Filippov, R. Kh. Iksanov, N. A. Kononenko, N. P. Berezina, and I. V. Falina, Colloid. J. 72, 243 (2010).

    Article  CAS  Google Scholar 

  2. N. P. Evlampieva, M. L. Gringol’ts, I. I. Zaitseva, and E. I. Ryumtsev, Vysokomol. Soedin., Ser. A 52, 1318 (2010).

    CAS  Google Scholar 

  3. H. F. Ridgway, G. Orbell, and S. Gray, J. Membr. Sci. 524, 436 (2017).

    Article  CAS  Google Scholar 

  4. G. B. Mel’nikova, G. K. Zhavnerko, S. A. Chizhik, et al., Membr. Membr. Tekhnol., No. 2, 144 (2016).

  5. S. Wu, X. Qin, and M. Li, J. Ind. Textiles 44, 85 (2014).

    Article  CAS  Google Scholar 

  6. E. Drazevic, K. Kosutic, and V. Freger, Water Res. 49, 444 (2014).

    Article  CAS  Google Scholar 

  7. S. K. Gupta, P. Singh, and R. Kumar, Radiat. Eff. Defects Solids 169, 679 (2014).

    Article  CAS  Google Scholar 

  8. E. S. Drozd, S. A. Chizhik, and E. E. Konstantinova, Ross. Zh. Biomekh. 13 (4), 22 (2009).

    Google Scholar 

  9. V. I. Vasil’eva, E. A. Goleva, V. F. Selemenev, S. I. Karpov, and M. A. Smagin, Russ. J. Phys. Chem. A 93, 542 (2019).

    Article  Google Scholar 

  10. Y. Termonia, Polymer 48, 1435 (2007).

    Article  CAS  Google Scholar 

  11. P. P. Ladewig, R. B. Knott, A. J. Hill, et al., Chem. Mater. 19, 2372 (2007).

    Article  CAS  Google Scholar 

  12. R. Rinaldi, P. L. O. Volpe, and I. L. Torriani, J. Colloid Interface Sci. 318, 59 (2008).

    Article  CAS  Google Scholar 

  13. J.-L. di Flavio, R. Pelton, M. Leduc, et al., Cellulose 14, 257 (2007).

    Article  CAS  Google Scholar 

  14. V. I. Azarov, A. V. Burov, and A. V. Obolenskaya, Chemistry of Wood and Synthetic Polymers, The Manual (SPbLTA, St. Petersburg, 1999) [in Russian].

  15. Yu. A. Fedotov and Yu. E. Kirsh, Membrany, Ser. Krit. Tekhnol., No. 5, 17 (2000).

  16. V. A. Uglyanskaya, G. A. Chikin, V. F. Selemenev, et al., Infrared Spectroscopy of Ion Exchange Materials (VGU, Voronezh, 1989) [in Russian].

    Google Scholar 

  17. E. P. Ageev, N. N. Matushkina, and N. L. Strusovskaya, Sorbtsion. Khromatogr. Protsessy 10, 606 (2010).

    Google Scholar 

  18. G. V. Pankina, P. A. Chernavskii, V. O. Kazak, N. E. Strokova, and V. V. Lunin, Russ. J. Phys. Chem. A 92, 1682 (2018). https://doi.org/10.1134/S0044453718090194

    Article  CAS  Google Scholar 

  19. A. Bellare, R. E. Cohen, and A. S. Argon, Polymer, No. 34, 1393 (1993).

  20. S. V. Kudashev, V. N. Arisova, T. I. Danilenko, et al., Izv. Volgogr. Tekh. Univ., No. 19, 81 (2013).

  21. V. A. Kargin and G. L. Slonimskii, Essays on Physics and Chemistry of Polymers (Khimiya, Moscow, 1967) [in Russian].

    Google Scholar 

  22. E. Hult, J. Iversen, and J. Sugiyama, Cellulose, No. 10, 103 (2003).

  23. N. A. Mamleeva, A. L. Kustov, and V. V. Lunin, Russ. J. Phys. Chem. A 92, 1675 (2018). https://doi.org/10.1134/S0044453718090182

    Article  CAS  Google Scholar 

  24. P. P. Rymkevich, V. V. Golovina, A. G. Makarov, et al., Vestn. SPb. Univ. Tekhnol. Dizaina, Ser. 1: Estesv. Tekh. Nauki, No. 2, 43 (2017).

    Article  Google Scholar 

  25. R. Huisman and H. Heuvel, J. Appl. Polym. Sci. 22, 943 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Lazarev.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, S.I., Golovin, Y.M., Khorokhorina, I.V. et al. Analysis of the Effect of Transmembrane Pressure on the Change in the Structural and Transport Properties of Active and Drainage Layers of Composite Films UPM-50 and UPM-100. Russ. J. Phys. Chem. 94, 1914–1920 (2020). https://doi.org/10.1134/S0036024420090150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420090150

Keywords:

Navigation