Skip to main content

Advertisement

Log in

Energy balanced data gathering approaches, issues and research directions

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs) and Internet of Things domain comprise of numerous small sized battery powered sensor nodes. Energy efficiency and energy balancing are very important aspects from the perspective of increasing the lifespan of WSN. Energy balancing is more important in case of multi-hop networks with many-to-one communication pattern as the nodes which are closer to the sink have more relay load than the other nodes. In this work, we present a detailed discussion on the different energy balancing approaches with a detailed analysis of each. The discussion is further accompanied by a detailed analytical comparison of the approaches. Further, this study presents a detailed analytical discussion and comparative study of the different energy balancing schemes based on mixed-hop transmission. Mixed transmissions, where each node selects between cheap hop-by-hop transmission and costly direct transmissions, is a reasonable approach to achieve balanced energy consumption. Besides, the paper also throws some light on the various issues and challenges present in the domain of mixed-hop energy balancing. It also mentions few research directions which can be focused upon to carry further research in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Adasme, P. (2019). Optimal sub-tree scheduling for wireless sensor networks with partial coverage. Computer Standards & Interfaces, 61, 20–35.

    Article  Google Scholar 

  2. Agrawal, D., & Pandey, S. (2018). FUCA: Fuzzy-based unequal clustering algorithm to prolong the lifetime of wireless sensor networks. International Journal of Communication Systems, 31(2), e3448.

    Article  Google Scholar 

  3. Aguilar-Gonzalez, R., Ramos, V., Prieto-Guerrero, A., Cardenas-Juarez, M., Rico, U. P., & Stevens-Navarro, E. (2018). A low-complexity antenna selection algorithm for cooperative sensor networks. In IEEE Canadian conference on electrical & computer engineering (CCECE) (pp. 1–4). IEEE

  4. Ahmed, Y. E., Adjallah, K. H., Stock, R., Kacem, I., & Babiker, S. F. (2018). NDSC based methods for maximizing the lifespan of randomly deployed wireless sensor networks for infrastructures monitoring. Computers & Industrial Engineering, 115, 17–25.

    Article  Google Scholar 

  5. Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.

    Article  Google Scholar 

  6. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  7. Althunibat, S., Abu-Al-Aish, A., Shehab, W. F. A., & Alsawalmeh, W. H. (2016). Auction-based data gathering scheme for wireless sensor networks. IEEE Communications Letters, 20(6), 1223–1226.

    Article  Google Scholar 

  8. Althunibat, S., & Mesleh, R. (2018). Index modulation for cluster-based wireless sensor networks. IEEE Transactions on Vehicular Technology, 67(8), 6943–6950.

    Article  Google Scholar 

  9. Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.

    Article  Google Scholar 

  10. Anwit, R., & Jana, P. K. (2020). An efficient clustering based data collection using mobile sink in wireless sensor networks. In Proceedings of the 21st international conference on distributed computing and networking (pp. 1–5).

  11. Bakkali, A., Pelegrí-Sebastiá, J., Sogorb, T., Llario, V., & Bou-Escriva, A. (2016). A dual-band antenna for RF energy harvesting systems in wireless sensor networks. Journal of Sensors, 2016, 1–8.

  12. Bhagyalakshmi, L., Suman, S. K., & Murugan, K. (2012). Corona based clustering with mixed routing and data aggregation to avoid energy hole problem in wireless sensor network. In Fourth international conference on advanced computing (ICoAC) (pp. 1–8). IEEE.

  13. Bhattacharjee, S., & Agarwal, K. (2017). Energy efficient multiple sink placement in wireless sensor networks. In 4th International conference on networking, systems and security (NSysS) (pp. 1–7). IEEE.

  14. Bidoki, N. H., Baghdadabad, M. B., Sukthankar, G., & Turgut, D. (2018). Joint value of information and energy aware sleep scheduling in wireless sensor networks: A linear programming approach. In IEEE international conference on communications (ICC) (pp. 1–6). IEEE.

  15. Boukerche, A., Efstathiou, D., Nikoletseas, S., & Raptopoulos, C. (2011). Close-to-optimal energy balanced data propagation via limited, local network density information. In 14th ACM international conference on modeling, analysis and simulation of wireless and mobile systems (pp. 85–92).

  16. Boukerche, A., Efstathiou, D., Nikoletseas, S., & Raptopoulos, C. (2012). Exploiting limited density information towards near-optimal energy balanced data propagation. Computer Communications, 35(18), 2187–2200.

    Article  Google Scholar 

  17. Ceriotti, M., Mottola, L., Picco, G. P., Murphy, A. L., Guna, S., Corra, M., et al. (2009). Monitoring heritage buildings with wireless sensor networks: The torre aquila deployment. In 8th International conference on information processing in sensor networks (IPSN) (pp. 277–288).

  18. Chang, C. Y., & Chang, H. R. (2008). Energy-aware node placement, topology control and MAC scheduling for wireless sensor networks. Computer Networks, 52(11), 2189–2204.

    Article  Google Scholar 

  19. Chau, A. C. Y., Dawson, J. F., & Mitchell, P. D. (2019). Medium access and power control protocol for wireless sensor networks with directional antennas. In IEEE international conference on information and communication technology (ICTC), October 16–19, 2019. IEEE.

  20. Chawla, A., Patel, A., Jagannatham, A. K., & Varshney, P. K. (2019). Distributed detection in massive MIMO wireless sensor networks under perfect and imperfect CSI. IEEE Transactions on Signal Processing, 67(15), 4055–4068.

    Article  Google Scholar 

  21. Chen, F., Guo, L., & Chen, C. (2012). A survey on energy management in the wireless sensor networks. IERI Procedia, 3, 60–66.

    Article  Google Scholar 

  22. Chen, T. S., Du, W. Q., & Chen, J. J. (2019). Energy-efficient data collection by mobile sink in wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 1–6). IEEE.

  23. Chen, W. S., Cheng, C. M., Liao, B. Y., Chang, Y. L., & Wang, H. Y. (2018). Triple-band slot antenna array for energy harvesting for wireless sensor networks. Sensors and Materials, 30(3), 587–594.

    Article  Google Scholar 

  24. Chugh, A., & Panda, S. (2018). Strengthening clustering through relay nodes in sensor networks. Procedia Computer Science, 132, 689–695.

    Article  Google Scholar 

  25. Ciccia, S., Giordanengo, G., & Vecchi, G. (2019). Energy efficiency in IoT networks: Integration of reconfigurable antennas in ultra low-power radio platforms based on system-on-chip. IEEE Internet of Things Journal, 6(4), 6800–6810.

    Article  Google Scholar 

  26. Cui, Z., Cao, Y., Cai, X., Cai, J., & Chen, J. (2018). Optimal leach protocol with modified bat algorithm for big data sensing systems in internet of things. Journal of Parallel and Distributed Computing, 132, 217–229.

    Article  Google Scholar 

  27. Deng, R., He, S., & Chen, J. (2018). An online algorithm for data collection by multiple sinks in wireless-sensor networks. IEEE Transactions on Control of Network Systems, 5(1), 93–104.

    Article  Google Scholar 

  28. Dihissou, A., Diallo, A., Le Thuc, P., & Staraj, R. (2018). Directive and reconfigurable loaded antenna array for wireless sensor networks. Progress in Electromagnetics Research, 84, 103–117.

    Article  Google Scholar 

  29. Din, S., Paul, A., Ahmad, A., & Kim, J. H. (2019). Energy efficient topology management scheme based on clustering technique for software defined wireless sensor network. Peer-to-Peer Networking and Applications, 12(2), 348–356.

    Article  Google Scholar 

  30. Dohare, U., Lobiyal, D., & Kumar, S. (2014). Energy balanced model for lifetime maximization in randomly distributed wireless sensor networks. Wireless Personal Communications, 78(1), 407–428.

    Article  Google Scholar 

  31. Dong, Q., Yu, L., Lu, H., Hong, Z., & Chen, Y. (2010). Design of building monitoring systems based on wireless sensor networks. Wireless Sensor Network, 2(9), 703–709.

    Article  Google Scholar 

  32. Du, G., Niu, Y., & Zhao, J. (2017). A relay node deployment strategy for energy-balance using a group gaussian distribution. International Journal of Sensor Networks, 24(4), 222–229.

    Article  Google Scholar 

  33. Du, Y., Wang, Z., Gong, J., Xu, N., & Hu, X. (2019). Cross-layer optimized energy-balanced topology control algorithm for WSNS. Journal of Sensors, 2019, 1–11.

  34. Efthymiou, C., Nikoletseas, S., & Rolim, J. (2006). Energy balanced data propagation in wireless sensor networks. Wireless Networks, 12(6), 691–707.

    Article  Google Scholar 

  35. El Fissaoui, M., Beni-Hssane, A., & Saadi, M. (2019). Energy efficient and fault tolerant distributed algorithm for data aggregation in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 10(2), 569–578.

    Article  Google Scholar 

  36. Erdun, Z., Juan, Y., Peihe, T., & Hao, L. (2009). An energy-balanced data transmission scheme for clustered wireless sensor networks. In 5th International conference on wireless communications, networking and mobile computing (WiCom ’09) (Vol. 5, pp. 1–4).

  37. Faragardi, H. R., Vahabi, M., Fotouhi, H., Nolte, T., & Fahringer, T. (2018). An efficient placement of sinks and SDN controller nodes for optimizing the design cost of industrial IoT systems. Software: Practice and Experience, 48(10), 1893–1919.

    Google Scholar 

  38. Gammarano, N., Schandy, J., & Steinfeld, L. (2020). Reducing neighbor discovery time in sensor networks with directional antennas using dynamic contention resolution. In Design automation for embedded systems (pp. 1–25).

  39. Gara, F., Saad, L. B., Ayed, R. B., & Tourancheau, B. (2019). A new scheme for RPL to handle mobility in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 30(3), 173–186.

    Article  Google Scholar 

  40. Gharaei, N., Al-Otaibi, Y. D., Butt, S. A., Sahar, G., & Rahim, S. (2019). Energy-efficient and coverage-guaranteed unequal-sized clustering for wireless sensor networks. IEEE Access, 7, 157883–157891.

    Article  Google Scholar 

  41. Gope, P., Das, A. K., Kumar, N., & Cheng, Y. (2019). Lightweight and physically secure anonymous mutual authentication protocol for real-time data access in industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 15(9), 4957–4968.

    Article  Google Scholar 

  42. Guleria, K., & Verma, A. K. (2019). Meta-heuristic ant colony optimization based unequal clustering for wireless sensor network. Wireless Personal Communications, 105(3), 891–911.

    Article  Google Scholar 

  43. Guo, W., Liu, Z., & Wu, G. (2003). An energy-balanced transmission scheme for sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (pp. 300–301). ACM.

  44. Guo, X., Leong, A. S., & Dey, S. (2017). Estimation in wireless sensor networks with security constraints. IEEE Transactions on Aerospace and Electronic Systems, 53(2), 544–561.

    Article  Google Scholar 

  45. Gupta, G. P., & Saha, B. (2020). Load balanced clustering scheme using hybrid metaheuristic technique for mobile sink based wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing.

  46. Gupta, V., & Doja, M. (2018). H-leach: Modified and efficient leach protocol for hybrid clustering scenario in wireless sensor networks. In Next-generation networks (pp. 399–408). Berlin: Springer.

  47. Guruprakash, B., Balasubramanian, C., & Sukumar, R. (2020). An approach by adopting multi-objective clustering and data collection along with node sleep scheduling for energy efficient and delay aware WSN. Peer-to-Peer Networking and Applications, 13(1), 304–319.

    Article  Google Scholar 

  48. Halder, S., & Ghosal, A. (2017). Lifetime enhancement of wireless sensor networks by avoiding energy-holes with gaussian distribution. Telecommunication Systems, 64(1), 113–133.

    Article  Google Scholar 

  49. Hanh, N. T., Binh, H. T. T., Hoai, N. X., & Palaniswami, M. S. (2019). An efficient genetic algorithm for maximizing area coverage in wireless sensor networks. Information Sciences, 488, 58–75.

    Article  Google Scholar 

  50. Hawbani, A., Wang, X., Al-Sharabi, Y. A., Ghannami, A., Kuhlani, H., & Karmoshi, S. (2018). Load-balanced opportunistic routing for asynchronous duty-cycled WSN. IEEE Transactions on Mobile Computing, 18(7), 1601–1615.

  51. He, X., Fu, X., & Yang, Y. (2019). Energy-efficient trajectory planning algorithm based on multi-objective PSO for the mobile sink in wireless sensor networks. IEEE Access, 7, 176204–176217.

    Article  Google Scholar 

  52. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In 33rd Hawaii international conference on system sciences (HICSS ’00) (pp. 8020–8030).

  53. Holisaz, H., & Ling, Y. (2017). Antenna systems for wireless sensor devices. US Patent App. 14/883,432.

  54. Hossain, A. (2017). Equal energy dissipation in wireless sensor network. AEU-International Journal of Electronics and Communications, 71, 192–196.

    Article  Google Scholar 

  55. Hung, T. C., Ngoc, D. T., The, P. T., Huynh, L. N., et al. (2019). A moving direction proposal to save energy consumption for mobile sink in wireless sensor network. In 21st International conference on advanced communication technology (ICACT) (pp. 107–110). IEEE.

  56. Ishmanov, F., Malik, A. S., & Kim, S. W. (2011). Energy consumption balancing (ECB) issues and mechanisms in wireless sensor networks (WSNS): A comprehensive overview. European Transactions on Telecommunications, 22, 151–167.

    Article  Google Scholar 

  57. Ishmanov, F., Malik, A. S., & Kim, S. W. (2011). Energy consumption balancing (ECB) issues and mechanisms in wireless sensor networks (WSNS): A comprehensive overview. European Transactions on Telecommunications, 22(4), 151–167.

    Article  Google Scholar 

  58. Jan, N., Javaid, N., Javaid, Q., Alrajeh, N., Alam, M., Khan, Z. A., et al. (2017). A balanced energy-consuming and hole-alleviating algorithm for wireless sensor networks. IEEE Access, 5, 6134–6150.

    Article  Google Scholar 

  59. Jarry, A., Leone, P., Nikoletseas, S., & Rolim, J. (2011). Optimal data gathering paths and energy-balance mechanisms in wireless networks. Ad Hoc Networks, 9(6), 1036–1048.

    Article  Google Scholar 

  60. Jarry, A., Leone, P., Powell, O., & Rolim, J. (2006). An optimal data propagation algorithm for maximizing the lifespan of sensor networks. In Distributed computing in sensor systems (DCOSS) (pp. 405–421).

  61. Jha, V., Verma, S., Prakash, N., & Gupta, G. (2018). Corona based optimal node deployment distribution in wireless sensor networks. Wireless Personal Communications, 102(1), 325–354.

    Article  Google Scholar 

  62. Jia, Y., Ji, K., & Liang, K. (2018). A unequal multiple hops clustering algorithm for wireless sensor networks. Procedia Computer Science, 131, 959–963.

    Article  Google Scholar 

  63. Jin, N., Chen, K., & Gu, T. (2012). Energy balanced data collection in wireless sensor networks. In 20th IEEE international conference on network protocols (ICNP) (pp. 1–10).

  64. Kabakulak, B. (2019). Sensor and sink placement, scheduling and routing algorithms for connected coverage of wireless sensor networks. Ad Hoc Networks, 86, 83–102.

    Article  Google Scholar 

  65. Kafi, M. A., Challal, Y., Djenouri, D., Doudou, M., Bouabdallah, A., & Badache, N. (2013). A study of wireless sensor networks for urban traffic monitoring: Applications and architectures. Procedia Computer Science, 19, 617–626.

    Article  Google Scholar 

  66. Karimi-Bidhendi, S., Guo, J., & Jafarkhani, H. (2019). Using quantization to deploy heterogeneous nodes in two-tier wireless sensor networks. In IEEE international symposium on information theory (ISIT) (pp. 1502–1506). IEEE.

  67. Kaur, R., & Sharma, M. (2011). An approach to design habitat monitoring system using sensor networks. International Journal of Soft Computing and Engineering (IJSCE), 1, 5–8.

    Google Scholar 

  68. Kaur, S., & Mahajan, R. (2018). Hybrid meta-heuristic optimization based energy efficient protocol for wireless sensor networks. Egyptian Informatics Journal, 19, 145–150.

    Article  Google Scholar 

  69. Khalily-Dermany, M., Nadjafi-Arani, M., & Doostali, S. (2019). Combining topology control and network coding to optimize lifetime in wireless-sensor networks. Computer Networks, 162, 106859.

    Article  Google Scholar 

  70. Khan, A., Javaid, N., Sher, A., Abbasi, R. A., Ahmad, Z., & Ahmed, W. (2018). Load balancing and collision avoidance using opportunistic routing in wireless sensor networks. In IEEE 32nd international conference on advanced information networking and applications (AINA) (pp. 236–243). IEEE.

  71. Khan, M. A., Javaid, N., Wadud, Z., Gull, S., Imran, M., & Nasr, K. (2017). Towards energy balancing in heterogeneous wireless sensor networks. In 13th International conference on wireless communications and mobile computing (IWCMC) (pp. 786–791). IEEE.

  72. Khan, T., Singh, K., Abdel-Basset, M., Long, H. V., Singh, S. P., Manjul, M., et al. (2019). A novel and comprehensive trust estimation clustering based approach for large scale wireless sensor networks. IEEE Access, 7, 58221–58240.

    Article  Google Scholar 

  73. Khanmirza, H. (2017). Mitigating energy hole problem with power control in heterogeneous sensor networks. In Iranian conference on electrical engineering (ICEE) (pp. 736–741). IEEE.

  74. Kim, H. Y. (2016). An energy-efficient load balancing scheme to extend lifetime in wireless sensor networks. Cluster Computing, 19(1), 279–283.

    Article  Google Scholar 

  75. Kim, H. Y., & Kim, J. (2017). An energy-efficient balancing scheme in wireless sensor networks. Wireless Personal Communications, 94(1), 17–29.

    Article  Google Scholar 

  76. Ko, J., Lim, J. H., Chen, Y., Musvaloiu-E, R., Terzis, A., Masson, G. M., et al. (2010). MEDiSN: Medical emergency detection in sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 10(1), 11.

    Article  Google Scholar 

  77. Koley, I., & Samanta, T. (2018). Mobile sink based data collection for energy efficient coordination in wireless sensor network using cooperative game model. Telecommunication Systems, 71, 377–396.

    Article  Google Scholar 

  78. Kulshrestha, J., & Mishra, M. (2017). An adaptive energy balanced and energy efficient approach for data gathering in wireless sensor networks. Ad Hoc Networks, 54, 130–146.

    Article  Google Scholar 

  79. Kulshrestha, J., & Mishra, M. K. (2018). Energy balanced data gathering approaches in wireless sensor networks using mixed-hop communication. Computing, 100, 1033–1058.

    Article  Google Scholar 

  80. Kumar, S., & Kim, H. (2019). Energy efficient scheduling in wireless sensor networks for periodic data gathering. IEEE Access, 7, 11410–11426.

    Article  Google Scholar 

  81. Leone, P., Nikoletseas, S., & Rolim, J. (2010). Stochastic models and adaptive algorithms for energy balance in sensor networks. Theory of Computing Systems, 47(2), 433–453.

    Article  Google Scholar 

  82. Leone, P., Nikoletseas, S., & Rolim, J. D. (2011). Energy-balanced data propagation in wireless sensor networks, chap. 16 (pp. 481–513). Berlin: Springer.

    Google Scholar 

  83. Li, F., Yang, H., Zou, Y., Yu, D., & Yu, J. (2019). Joint optimization of routing and storage node deployment in heterogeneous wireless sensor networks towards reliable data storage. In International conference on wireless algorithms, systems, and applications (pp. 162–174). Berlin: Springer.

  84. Li, X., Li, D., Wan, J., Vasilakos, A. V., Lai, C. F., & Wang, S. (2017). A review of industrial wireless networks in the context of industry 4.0. Wireless Networks, 23(1), 23–41.

    Article  Google Scholar 

  85. Lindsey, S., & Raghavendra, C. S. (2002). PEGASIS: Power-efficient gathering in sensor information systems. Aerospace Conference Proceedings, 3, 1125–1130.

    Google Scholar 

  86. Liu, F., & Chang, Y. (2019). An energy aware adaptive kernel density estimation approach to unequal clustering in wireless sensor networks. IEEE Access, 7, 40569–40580.

    Article  Google Scholar 

  87. Liu, T., Gu, T., Jin, N., & Zhu, Y. (2017). A mixed transmission strategy to achieve energy balancing in Wireless sensor networks. IEEE Transactions on Wireless Communications, 16(4), 2111–2122.

    Article  Google Scholar 

  88. Liu, T., Peng, J., Yang, J., Chen, G., & Xu, W. (2017). Avoidance of energy hole problem based on feedback mechanism for Heterogeneous sensor networks. International Journal of Distributed Sensor Networks, 13(6), 1550147717713625.

    Google Scholar 

  89. Liu, X. (2016). A novel transmission range adjustment strategy for energy hole Avoiding in wireless sensor networks. Journal of Network and Computer Applications, 67, 43–52.

    Article  Google Scholar 

  90. Liu, X., Zhu, R., Anjum, A., Wang, J., Zhang, H., & Ma, M. (2020). Intelligent data fusion algorithm based on hybrid delay-aware Adaptive clustering in wireless sensor networks. Future Generation Computer Systems, 104, 1–14.

    Article  Google Scholar 

  91. Liu, Z., Xiu, D., & Guo, W. (2005). An energy-balanced model for data transmission in sensor networks. In 62nd IEEE vehicular technology conference (Vol. 4, pp. 2332–2336).

  92. Mann, P. S., & Singh, S. (2019). Improved artificial bee colony metaheuristic for energy-efficient clustering in wireless sensor networks. Artificial Intelligence Review, 51(3), 329–354.

    Article  Google Scholar 

  93. Mehra, P. S., Doja, M., & Alam, B. (2019). Zonal based approach for clustering in heterogeneous WSN. International Journal of Information Technology, 11(3), 507–515.

    Article  Google Scholar 

  94. Mir, Z. H., & Ko, Y. B. (2020). Self-adaptive neighbor discovery in wireless sensor networks with sectored-antennas. Computer Standards & Interfaces, 70, 103427.

    Article  Google Scholar 

  95. Mishra, R., Jha, V., Tripathi, R. K., & Sharma, A. K. (2018). Corona based node distribution scheme targeting energy balancing in wireless sensor networks for the sensors having limited sensing range. Wireless Networks, 26, 879–896.

    Article  Google Scholar 

  96. Mitra, R., & Sharma, S. (2018). Proactive data routing using controlled mobility of a mobile sink in wireless sensor networks. Computers & Electrical Engineering, 70, 21–36.

    Article  Google Scholar 

  97. Mosavvar, I., & Ghaffari, A. (2019). Data aggregation in wireless sensor networks using firefly algorithm. Wireless Personal Communications, 104(1), 307–324.

    Article  Google Scholar 

  98. Moussa, N., Hamidi-Alaoui, Z., & El Alaoui, A. E. B. (2020). ECRP: An energy-aware cluster-based routing protocol for wireless sensor networks. Wireless Networks, 26, 2915–2928.

    Article  Google Scholar 

  99. Mukherjee, S., Amin, R., & Biswas, G. (2019). Design of routing protocol for multi-sink based wireless sensor networks. Wireless Networks, 25(7), 4331–4347.

    Article  Google Scholar 

  100. Natarajan, M., & Subramanian, S. (2019). A cross-layer design: Energy efficient multilevel dynamic feedback scheduling in wireless sensor networks using deadline aware active time quantum for environmental monitoring. International Journal of Electronics, 106(1), 87–108.

    Article  Google Scholar 

  101. Nguyen, K. V., Le Nguyen, P., Vu, Q. H., & Van Do, T. (2017). An energy efficient and load balanced distributed routing scheme for wireless sensor networks with holes. Journal of Systems and Software, 123, 92–105.

    Article  Google Scholar 

  102. Nikoletseas, S. (2010). On the energy balance problem in distributed sensor networks. Computer Science Review, 4(2), 65–79.

    Article  Google Scholar 

  103. Pan, J. S., Dao, T. K., et al. (2019). A compact bat algorithm for unequal clustering in wireless sensor networks. Applied Sciences, 9(10), 1973.

    Article  Google Scholar 

  104. Papachary, B., Venkatanaga, A. M., & Kalpana, G. (2020). A TDMA based energy efficient unequal clustering protocol for wireless sensor network using PSO. In Recent trends and advances in artificial intelligence and internet of things (pp. 119–124). Berlin: Springer.

  105. Patil, M., & Sharma, C. (2018). Energy-efficient packet routing model for wireless sensor network. In Advances in electronics, communication and computing (pp. 341–350). Berlin: Springer.

  106. Peng, Y., Al-Hazemi, F., Boutaba, R., Tong, F., Hwang, I. S., & Youn, C. H. (2017). Enhancing energy efficiency via cooperative MIMO in wireless sensor networks: State of the art and future research directions. IEEE Communications Magazine, 55(11), 47–53.

    Article  Google Scholar 

  107. Pottie, G. J., & Kaiser, W. J. (2000). Wireless integrated network sensors. Communications of the ACM, 43(5), 51–58.

    Article  Google Scholar 

  108. Poveda-García, M., Oliva-Sánchez, J., Sanchez-Iborra, R., Cañete-Rebenaque, D., & Gomez-Tornero, J. L. (2019). Dynamic wireless power transfer for cost-effective wireless sensor networks using frequency-scanned beaming. IEEE Access, 7, 8081–8094.

    Article  Google Scholar 

  109. Powell, O., Leone, P., & Rolim, J. (2007). Energy optimal data propagation in wireless sensor networks. Journal of Parallel and Distributed Computing, 67(3), 302–317.

    Article  Google Scholar 

  110. Qin, X., Zhang, B., & Li, C. (2019). Localized topology control and on-demand power-efficient routing for wireless ad hoc and sensor networks. Peer-to-Peer Networking and Applications, 12(1), 189–208.

    Article  Google Scholar 

  111. Raghunathan, V., Schurgers, C., Park, S., & Srivastava, M. B. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.

    Article  Google Scholar 

  112. Rahman, A. A., Kahar, M. N. M., & Din, W. I. S. W. (2019). Distance based thresholds for 2-tier relay nodes selection in WSN. Computer Standards & Interfaces, 66, 103359.

    Article  Google Scholar 

  113. Rajawat, A., & Singhal, P. (2019). Design and implementation of a dual-band rectifier antenna for efficient RF energy harvesting in wireless sensor networks. Journal of Circuits, Systems and Computers, 28(02), 1950034.

    Article  Google Scholar 

  114. Rao, V., & Kar, S. (2019). Energy efficient routing in wireless sensor networks via circulating operator packets. Wireless Networks, 25(6), 3063–3080.

    Article  Google Scholar 

  115. Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.

    Article  Google Scholar 

  116. Ren, W., Hao, K., Li, C., Du, X., Liu, Y., & Wang, L. (2019). Fuzzy probabilistic topology control algorithm for underwater wireless sensor networks. In International conference on artificial intelligence for communications and networks (pp. 435–444). Berlin: Springer.

  117. Rost, P., & Fettweis, G. (2010) . On the transmission-computation-energy tradeoff in wireless and fixed networks. In: GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pp. 1394–1399

  118. Sabale, K., & Mini, S. (2019). Anchor node path planning for localization in wireless sensor networks. Wireless Networks, 25(1), 49–61.

    Article  Google Scholar 

  119. Sadeghi, F., & Avokh, A. (2020). Load-balanced data gathering in internet of things using an energy-aware cuckoo-search algorithm. International Journal of Communication Systems, 33(9), e4385.

    Article  Google Scholar 

  120. Saginbekov, S., & Jhumka, A. (2017). Many-to-many data aggregation scheduling in wireless sensor networks with two sinks. Computer Networks, 123, 184–199.

    Article  Google Scholar 

  121. Samara, G., & Aljaidi, M. (2019). Efficient energy, cost reduction, and QoS based routing protocol for wireless sensor networks. arXiv preprint arXiv:1903.09636.

  122. Sarkar, A., & Murugan, T. S. (2019). Cluster head selection for energy efficient and delay-less routing in wireless sensor network. Wireless Networks, 25(1), 303–320.

    Article  Google Scholar 

  123. Selvi, M., Velvizhy, P., Ganapathy, S., Nehemiah, H. K., & Kannan, A. (2019). A rule based delay constrained energy efficient routing technique for wireless sensor networks. Cluster Computing, 22(5), 10839–10848.

    Article  Google Scholar 

  124. Shallahuddin, A. A., Kadir, M. F. A., Mohamed, M. A., Abidin, A. F. A., Usop, N. S. M., Zakaria, Z. A., et al. (2020). An enhanced adaptive duty cycle scheme for optimum data transmission in wireless sensor network. In Information science and applications (pp. 33–40). Berlin: Springer.

  125. Shankar, T., Eappen, G., Sahani, S., Rajesh, A., & Mageshvaran, R. (2019). Integrated cuckoo and monkey search algorithm for energy efficient clustering in wireless sensor networks. In Innovations in power and advanced computing technologies (i-PACT) (Vol. 1, pp. 1–4). IEEE.

  126. Sharma, S., Bhatia, V., & Gupta, A. (2017). Noncoherent IR-UWB receiver using massive antenna arrays for wireless sensor networks. IEEE Sensors Letters, 2(1), 1–4.

    Article  Google Scholar 

  127. Sharma, S., Patel, A. K., Mitra, R., & Jauhari, R. (2018). Reinforcement based optimal routing algorithm for multiple sink based wireless sensor networks. In Progress in intelligent computing techniques: Theory, practice, and applications (pp. 481–490). Berlin: Springer.

  128. Sharma, S., Puthal, D., Tazeen, S., Prasad, M., & Zomaya, A. Y. (2017). MSGR: A mode-switched grid-based sustainable routing protocol for wireless sensor networks. IEEE Access, 5, 19864–19875.

    Article  Google Scholar 

  129. Singh, S. P., & Sharma, S. (2015). A survey on cluster based routing protocols in wireless sensor networks. Procedia Computer Science, 45, 687–695.

    Article  Google Scholar 

  130. So, J., & Byun, H. (2017). Load-balanced opportunistic routing for duty-cycled wireless sensor networks. IEEE Transactions on Mobile Computing, 16(7), 1940–1955.

    Article  Google Scholar 

  131. Soua, R., & Minet, P. (2011). A survey on energy efficient techniques in wireless sensor networks. In 4th Joint IFIP wireless and mobile networking conference (WMNC 2011) (pp. 1–9).

  132. Souai, S., Diallo, A., Ribero, J. M., & Aguili, T. (2020). Design of compact superdirective and reconfigurable array antenna associated with non-foster elements for IoT. In International workshop on antenna technology (iWAT) (pp. 1–4). IEEE.

  133. Stojkoska, B. L. R., & Trivodaliev, K. V. (2017). A review of internet of things for smart home: Challenges and solutions. Journal of Cleaner Production, 140, 1454–1464.

    Article  Google Scholar 

  134. Suryadevara, N. K. (2017). Wireless sensor sequence data model for smart home and IoT data analytics. In Proceedings of the first international conference on computational intelligence and informatics (pp. 441–447). Berlin: Springer.

  135. Suzuki, M., Saruwatari, S., Kurata, N., & Morikawa, H. (2007). A high-density earthquake monitoring system using wireless sensor networks. In 5th International conference on embedded networked sensor systems (pp. 373–374).

  136. Tabibi, S., & Ghaffari, A. (2019). Energy-efficient routing mechanism for mobile sink in wireless sensor networks using particle swarm optimization algorithm. Wireless Personal Communications, 104(1), 199–216.

    Article  Google Scholar 

  137. Tan, X., Zhao, H., Han, G., Zhang, W., & Zhu, T. (2019). QSDN-wise: A new QoS-based routing protocol for software-defined wireless sensor networks. IEEE Access, 7, 61070–61082.

    Article  Google Scholar 

  138. Thirukrishna, J., Karthik, S., & Arunachalam, V. (2018). Revamp energy efficiency in homogeneous wireless sensor networks using optimized radio energy algorithm (OREA) and power-aware distance source routing protocol. Future Generation Computer Systems, 81, 331–339.

    Article  Google Scholar 

  139. Tran, H., Åkerberg, J., Björkman, M., & Tran, H. V. (2019). RF energy harvesting: An analysis of wireless sensor networks for reliable communication. Wireless Networks, 25(1), 185–199.

    Article  Google Scholar 

  140. Wang, J., Cao, J., Sherratt, R. S., & Park, J. H. (2017). An improved ant colony optimization-based approach with mobile sink for wireless sensor networks. The Journal of Supercomputing, 74, 6633–6645.

    Article  Google Scholar 

  141. Wang, J., Niu, Y., Cho, J., & Lee, S. (2007). Analysis of energy consumption in direct transmission and multi-hop transmission for wireless sensor networks. In Third international IEEE conference on signal-image technologies and internet-based system (pp. 275–280). IEEE.

  142. Wang, X., Wu, X., & Zhang, X. (2017). Optimizing opportunistic routing in asynchronous wireless sensor networks. IEEE Communications Letters, 21(10), 2302–2305.

    Article  Google Scholar 

  143. Wang, Y., & Tan, H. (2016). Distributed probabilistic routing for sensor network lifetime optimization. Wireless Networks, 22(3), 975–989.

    Article  Google Scholar 

  144. Winkler, M., Street, M., Tuchs, K. D., & Wrona, K. (2012). Wireless sensor networks for military purposes. In Autonomous sensor networks (pp. 365–394). Berlin: Springer.

  145. Winkler, M., Tuchs, K. D., Hughes, K., & Barclay, G. (2008). Theoretical and practical aspects of military wireless sensor networks. Journal of Telecommunications and Information Technology, 2, 37–45.

    Google Scholar 

  146. Woznowski, P., Burrows, A., Diethe, T., Fafoutis, X., Hall, J., Hannuna, S., et al. (2017). Sphere: A sensor platform for healthcare in a residential environment. In Designing, developing, and facilitating smart cities (pp. 315–333). Berlin: Springer.

  147. Xin, H., & Liu, X. (2017). Energy-balanced transmission with accurate distances for strip-based wireless sensor networks. IEEE Access, 5(99), 16193–16204.

    Article  Google Scholar 

  148. Xiu-wu, Y., Hao, Y., Yong, L., & Ren-rong, X. (2020). A clustering routing algorithm based on wolf pack algorithm for heterogeneous wireless sensor networks. Computer Networks, 167, 106994.

    Article  Google Scholar 

  149. Xue, Y., & Li, B. (2001). A location-aided power-aware routing protocol in mobile ad hoc networks. In Global telecommunications conference (GLOBECOM’01) (Vol. 5, pp. 2837–2841).

  150. Yahiaoui, S., Omar, M., Bouabdallah, A., Natalizio, E., & Challal, Y. (2018). An energy efficient and QoS aware routing protocol for wireless sensor and actuator networks. AEU-International Journal of Electronics and Communications, 83, 193–203.

    Article  Google Scholar 

  151. Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. H. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys & Tutorials, 19(2), 828–854.

    Article  Google Scholar 

  152. Ying, X., Wang, R., Yu, M., Yu, R., Shi, W., & Wang, J. (2019). Nonuniform node distribution using adaptive poisson disk for wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 1–7). IEEE.

  153. Yousefi, M. H. N., Kavian, Y. S., & Mahmoudi, A. (2019). RTMCH: real-time multichannel MAC for wireless video sensor networks. Multimedia Tools and Applications, 78(6), 7803–7818.

    Article  Google Scholar 

  154. Yu, C. M., & Ku, M. L. (2018). Joint hybrid transmission and adaptive routing for lifetime extension of WSNS. IEEE Access, 6, 21658–21667.

    Article  Google Scholar 

  155. Yu, C. M., Ku, M. L., & Chang, C. W. (2017). Hybrid multi-hop/single-hop opportunistic transmission of WSNS. In IEEE international conference on consumer electronics-Taiwan (ICCE-TW) (pp. 111–112). IEEE.

  156. Zafar, S., Bashir, A., & Chaudhry, S. A. (2019). Mobility-aware hierarchical clustering in mobile wireless sensor networks. IEEE Access, 7, 20394–20403.

    Article  Google Scholar 

  157. Zhang, D., Chen, Z., Zhou, H., Chen, L., & Shen, X. S. (2016). Energy-balanced cooperative transmission based on relay selection and power control in energy harvesting wireless sensor network. Computer Networks, 104, 189–197.

    Article  Google Scholar 

  158. Zhang, H., & Shen, H. (2009). Balancing energy consumption to maximize network lifetime in data-gathering sensor networks. IEEE Transactions on Parallel and Distributed Systems, 20(10), 1526–1539.

    Article  Google Scholar 

  159. Zhang, H., Shen, H., & Tan, Y. (2007). Optimal energy balanced data gathering in wireless sensor networks. In IEEE international parallel and distributed processing symposium (IPDPS) (pp. 1–10).

  160. Zhang, J., Zhao, E., Zhang, Q., & Liu, J. (2007). Energy-balanced solution for cluster-based wireless sensor networks with mixed communication modes. In International workshop on cross layer design (IWCLD’07) (pp. 29–32).

  161. Zhang, X., Tao, L., Yan, F., & Sung, D. K. (2019). Shortest-latency opportunistic routing in asynchronous wireless sensor networks with independent duty-cycling. IEEE Transactions on Mobile Computing, 19, 711–723.

    Article  Google Scholar 

  162. Zhao, Y., Li, Z., Hao, B., & Shi, J. (2019). Sensor selection for TDOA-based localization in wireless sensor networks with non-line-of-sight condition. IEEE Transactions on Vehicular Technology, 68(10), 9935–9950.

    Article  Google Scholar 

  163. Zhixin, L., Xinping, G., & Cailian, C. (2008). Energy-efficient optimal scheme based on mixed routing in wireless sensor networks. In 27th Chinese control conference, CCC 2008 (pp. 311–315). IEEE.

  164. Zhou, F., Trajcevski, G., Tamassia, R., Avci, B., Khokhar, A., & Scheuermann, P. (2017). Bypassing holes in sensor networks: Load-balance vs. latency. Ad Hoc Networks, 61, 16–32.

    Article  Google Scholar 

  165. Zhu, J., Zou, Y., & Zheng, B. (2017). Physical-layer security and reliability challenges for industrial wireless sensor networks. IEEE Access, 5, 5313–5320.

    Google Scholar 

  166. Zuhairy, R. M., & Al Zamil, M. G. (2018). Energy-efficient load balancing in wireless sensor network: An application of multinomial regression analysis. International Journal of Distributed Sensor Networks, 14(3), 1550147718764641.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagrati Kulshrestha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulshrestha, J., Mishra, M.K. Energy balanced data gathering approaches, issues and research directions. Telecommun Syst 76, 299–327 (2021). https://doi.org/10.1007/s11235-020-00714-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00714-5

Keywords

Navigation