Skip to main content
Log in

Melted Rocks (Clinkers and Paralavas) from the Khamaryn–Khural–Khiid Combustion Metamorphic Complex in Eastern Mongolia: Mineralogy, Geochemistry and Genesis

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The mineralogical and geochemical features of melted rocks of the Khamaryn–Khural–Khiid combustion metamorphic complex in Eastern Mongolia have been characterized for the first time and conditions of their formation have been estimated. Clinkers and paralavas were formed through partial melting of Early Cretaceous sedimentary sequence under the effect of wild coal fires, which have happened since at least 19th century. The studied area of the complex is dominated by pyrogenically modified pelitic rocks, while their melted varieties represented by clinkers of dacitic and rhyolitic compositions are restricted to the coal fire epicenters. Much less common are Ca-rich and Na-bearing silica-undersaturated mafic paralavas formed through melting of silicate minerals (newly formed and relict) in limestone. Pyrogenically modified mudstones and clinkers contain felsic silicate glass with melted grains of quartz, feldspar, monazite, and other minerals, as well as newly formed cordietite–sekaninaite, hercynite, magnetite, hematite, goethite, ferrosilite, cristobalite, barite-celestine, and accessory rutile, ilmenite, fluorapatite, and fayalite. The paralavas are fully crystallized rocks consisting of phenocryst assemblage (plagioclase, Al-clinopyroxene, melilite) and interstitial pleonast, K–Ba feldspar (celsian, hyalophane), minerals of the rhönite-kuratite series, Ca–Fe olivines (Ca-fayalite, kirschsteinite), pyrrhotite, barite, and fluorapatite. There are also barium Fe–Cu sulfides of the djerfisherite (zoharite, owensite) group and Fe phosphides (schreibersite, barringerite, and α-Fe + Fe3P eutectic). At the final stage, Ca-bearing nepheline-group mineral, supposedly, davidsmithite, crystallized in paralava matrix. The paralavas crystallized under high-temperature conditions (1365–945°C for Fe phosphides, near 1100°C for minerals of the rhönite-kuratite series, and 950–850°C for Fe–Ca olivines) at oxygen fugacity from IW to QFM buffers. Locally developed reducing conditions provided the formation of small drops of Fe phosphides and native iron. Some paralavas contain Fe3+-pleonast and rhönite-subgroup minerals with high dorrite end-member fraction, which were formed in oxidizing conditions likely corresponding to the HM buffer. Melilite–nepheline paralavas of combustion metamorphic complexes of Mongolia (Khamaryn–Khural–Khiid and Nyalga ones) have close mineralogical and geochemical features. Similar paralavas have not been described anywhere else in the world. The differences in the mineral–phase assemblages and geochemical composition of the clinkers and paralavas from these complexes can be related with composition variations of sedimentary protolith (pelitic and carbonate rocks) involved in the partial melting, as well as with local variations in the physicochemical conditions of their formation (temperature, fluid regime, oxygen fugacity, cooling–quenching rates of the pyrogenic melts, and other factors) during wild coal fires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Boivin, P., Données expérimentales préliminaires sur la stabilité de la rhönite à 1 atmosphère. Application aux gisements naturels, Bull. Mineral., 1980, vol. 103, pp. 491–502.

    Google Scholar 

  2. Britvin, S.N., Murashko, M.N., Vapnik, Y., et al., Earth’s phosphides in Levant and insights into the source of Archean prebiotic phosphorus, Sci. Reports, 2015, vol. 5, no. 8355, pp. 1–5.

    Google Scholar 

  3. Britvin, S.N., Murashko, M.N., Vapnik, E., et al., Barringerite Fe2P from pyrometamorphic rocks of the Hatrurim Formation, Israel, Geol. Ore Deposits, 2017, vol. 59, no. 7, pp. 619–625.

    Article  Google Scholar 

  4. Britvin, S.N., Murashko, M.N., Vapnik, Ye., et al., Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2, Phys. Chem. Mineral., 2019a, vol. 46, pp. 361–369.

    Article  Google Scholar 

  5. Britvin, S.N., Vapnik, Y., Polekhovsky, Y.S., et al., Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, South Levant, Mineral. Petrol, 2019b, vol. 113, pp. 237–248.

    Article  Google Scholar 

  6. Burns, S., Hargreaves, J.S.J., and Hunter, S.M., On the use methane as a reductant in the synthesis of transition metal phosphides, Catal. Communicat., 2007, vol. 8, pp. 931–935.

    Article  Google Scholar 

  7. Cosca, M. and Peacor, D., Chemistry and structure of esseneite, (CaFe3+AlSiO6). a new pyroxene produced by pyrometamorphism, Am. Mineral., 1987, vol. 72, pp. 148–156.

    Google Scholar 

  8. Cosca, M.A., Rouse, R.R., and Essene, E.J., Dorrite [Ca2(Mg,)(Al4Si2)O20], a new member of the aenigmatite group from a pyrometamorphic melt-rock, Am. Mineral., 1988, vol. 73, pp. 1440–1448.

    Google Scholar 

  9. Cosca, M.A., Essene, E.J., Geissman, J.G., et al., Pyrometamorphic rocks associated with naturally burned coal beds, Powder River Basin, Wyoming, Am. Mineral., 1989, vol. 74, pp. 85–100.

    Google Scholar 

  10. Davidson, P.M. and Mukhopadhyay, D.K., Ca–Fe–Mg olivines: phase relations and a solution model, Contrib. Mineral. Petrol., 1984, vol. 86, pp. 256–263.

    Article  Google Scholar 

  11. Deer, W.A., Howie, R.A., and Zussman, J., An Introduction to the Rock–Forming Minerals, New York: Wiley, 1992.

    Google Scholar 

  12. Diagrammy sostoyaniya dvoinykh i mnogokomponentnykh sistem na osnove zheleza (Phase Diagrams of Iron–Based Double and Multicomponent Systems) Bannykh, O.A, Budberg, P.B, Alisov, S.P, Eds., Moscow: Metallurgiya, 1986.

  13. Erdenetsogt, B., Lee, I., Bat–Erdene, D., and Jargal, L., Mongolian coal–bearing basins: geological settings, coal characteristics, distribution, and resources, Int. J. Coal. Geol., 2009, vol. 80, pp. 87–104.

    Article  Google Scholar 

  14. Foit, F.F., Hooper, R.L., and Rosenberg, P.E., An unusual pyroxene, melilite, and iron oxide mineral assemblage in a coal–fire buchite from Buffalo, Wyoming, Am. Mineral., 1987, vol. 72, pp. 137–147.

    Google Scholar 

  15. Galuskina, I.O., Krüger, B., Galuskin, E.V., et al., Zoharite, IMA 2017–049, Mineral. Mag., 2017, vol. 81, pp. 1279–1286.

    Article  Google Scholar 

  16. Grapes, R., Pyrometamorphism, 2nd Ed., Springer, 2011.

    Google Scholar 

  17. Grapes, R. and Keller, J., Fe2+–dominant rhönite in undersaturated alkaline basaltic rocks, Kaiserstuhl volcanic complex, Upper Rhine graben, SW Germany, Eur. J. Mineral., 2010, vol. 22, pp. 285–292.

    Article  Google Scholar 

  18. Haefeker, U., Kaindl, R., and Tropper, P., Semi–quantitative determination of the Fe/Mg ratio in synthetic cordierite using Raman spectroscopy, Am. Mineral., 2012, vol. 97, pp. 1662–1669.

    Article  Google Scholar 

  19. Haggerty, S.E., Oxide mineralogy of the upper mantle. Spinel mineral group, Lindsley., D.H., Ed., Oxide Minerals: Petrologic and Magnetic Significance, Rev. Mineral. Mineral. Soc. Amer, 1991, vol. 25, pp. 355–416.

  20. Havette, A., Clocchiatti, R., Nativel, P., and Montaggioni, L., Une paragenèse inhabituelle à fassaïte, mèlilite et rhönite dans un basalte alcalin contaminé au contact d’un récif coralline (Saint-Lieu, Ile de la Réunion), Bull. Mineral., 1982, vol. 105, pp. 364–375. http://www.minsoc.ru/FilesBase/2017–1–31–1.pdf

    Google Scholar 

  21. Kechid, S., Parodi, G.C., Pont, S., and Oberti, R., Davidsmithite, (Ca,□)2Na6Al8Si8O32: a new, Ca–bearing nepheline–group mineral from the Western Gneiss region, Norway, Eur. J. Mineral., 2017, vol. 29, pp. 1005–1013.

    Article  Google Scholar 

  22. Kunzmann, T., The aenigmatite–rhönite mineral group, Eur. J. Mineral., 1999, vol. 11, pp. 743–756.

    Article  Google Scholar 

  23. Laflamme, J.H.G., Roberts, A.C., Criddle, A.J., and Cabri, L.J., Owensite, (Ba,Pb)6(Cu,Fe,Ni)25S27, a new mineral species from the Wellgreen Cu–Ni–Pt–Pd deposit, Yukon, Can. Mineral., 1995, vol. 33, pp. 665–670.

    Google Scholar 

  24. Lavrent’ev, Yu.G., Karmanov, N.S., and Usova, L.V., Electron probe microanalysis of minerals: microanalyzer or scanning electron microscope, Russ. Geol. Geophys., 2015, vol. 56, no. 8, pp. 1154–1161.

    Article  Google Scholar 

  25. McDonough, W.E. and Sun, S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  26. Melluso, L., Conticelli, S., and Gennaro, R., Kirschsteinite in the Capo di Bove melilite leucitite lava (cecilite), Alban Hills, Italy, Mineral. Mag., 2010, vol. 74, pp. 887–902.

    Article  Google Scholar 

  27. Mukhopadhyay, D.K. and Lindsley, D.H., Phase relations in the join kirschsteinite (CaFeSiO4) – fayalite (Fe2SiO4), Am. Mineral., 1983, vol. 68, pp. 1089–1094.

    Google Scholar 

  28. Peretyazhko, I.S., CRYSTAL – Applied software for mineralogists, petrologists, and geochemists, Zap. Ross. Mineral. O–va, 1996, no. 3, pp. 141–148.

  29. Peretyazhko I.S., Savina E.A., Khromova E.A., et al., Unique clinkers and paralavas from a new Nyalga combustion metamorphic complex in Central Mongolia: mineralogy, geochemistry, and genesis, Petrology, 2018, vol. 26, no. 2, pp. 181–211.

    Article  Google Scholar 

  30. Peretyazhko, I.S., Savina, E.A., and Khromova, E.A., Minerals of the rhönite–kuratite series in paralavas from a new combustion metamorphic complex of Choir–Nyalga basin (Central Mongolia): composition, mineral assemblages, and formation conditions, Mineral. Mag., 2017, vol. 81, no. 4, pp. 949–974.

    Article  Google Scholar 

  31. Pokrovskii, P.V., Ammonium chloride from the Khamaryn–Khyral–Khiid brown coal field in the Mongolian People’s Republic, Zap. Vsesoyuz. Mineral. O–va, 1949, no. 3, pp. 38–45.

  32. Rossi, G., Oberti, R., and Smith, D.C., The crystal structure of lisetite, Am. Mineral., 1986, vol. 71, pp. 1378–1383.

    Google Scholar 

  33. Sharygin, V.V. K–Pb– and K–Ba–phases of the djerfisherite group in high–Ca rocks, XXXIII International Conference “Alkaline Magmatism of the Earth and related strategic metal deposits” School “Alkaline Magmatism of the Earth”, Moscow: GEOKhI, 2016, pp. 150–152.

  34. Sokol, E., Sharygin, V., Kalugin, V., et al., Fayalite and kirschsteinite solid solutions in melts from burned spoil–heaps, South Urals, Russia, Eur. J. Mineral, 2002, vol. 14, pp. 795–807.

    Article  Google Scholar 

  35. Sokol, E.B., Maksimova, N.V., Nigmatulina E.N., et al., Pirometamorfizm (Pyrometamorphism), Novosibirsk. Izd–vo SO RAN, 2005.

    Google Scholar 

  36. Stracher, A. and Prakash, E.V., Case Studies and Coal Fires, Amsterdam: Elsevier, 2015, vol. 3.

    Google Scholar 

  37. Wiedenmann, D., Zaitsev, A.N., Britvin, S.N., et al., Alumoåkermanite, (Ca,Na)2(Al,Mg,Fe2+)(Si2O7), a new mineral from the active carbonatite–nepheline–phonolite volcano Oldoinyo Lengai, northern Tanzania, Mineral. Mag., 2009, vol. 73, no. 3, pp. 373–384.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.N. Sapozhnikov and E.V. Kaneva (IGC SB RAS, Irkutsk) for XRD analysis of combustion metamorphic rocks. V.V. Sharygin (IGM SB RAS, Novosibirsk), A.V. Girnis (IGEM RAS, Moscow), and A.V. Samsonov (IGEM RAS, Moscow) are thanked for useful comments on the manuscript.

Funding

The study was carried out as part of Basic Research Program (no. 0350-2019-0007) of the Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Peretyazhko.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savina, E.A., Peretyazhko, I.S., Khromova, E.A. et al. Melted Rocks (Clinkers and Paralavas) from the Khamaryn–Khural–Khiid Combustion Metamorphic Complex in Eastern Mongolia: Mineralogy, Geochemistry and Genesis. Petrology 28, 431–457 (2020). https://doi.org/10.1134/S0869591120050057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591120050057

Keywords:

Navigation