Skip to main content
Log in

Design and implementation of blockchain-based digital advertising media promotion system

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

In recent years, the rapid development of the Internet digital advertising (IDA) market has brought many issues. Low-quality advertisements (ADs) have caused significant troubles for Internet users, and the “AD fraud” has plunged the IDA ecosystem into a crisis of trust. The blockchain’s trusted computing model provides new ideas for solving the above problems. In this paper, we designed and implemented a blockchain-based digital advertising media system (B2DAM), where the Hyperledger is used as the implementation platform. Our B2DAM system integrates distributed ledger, multi-chain, smart contracts, and consensus mechanisms to ensure decentralization and multi-party maintenance of immutable data. We implemented business logic in smart contracts and Hyperledger SDK. The experiments show the transaction throughput can reach 550 tps and the system can meet the application requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Androulaki E, Barger A, Bortnikov V, Cachin C, Christidis K, De Caro A, Enyeart D, Ferris C, Laventman G, Manevich Y, Muralidharan S, Murthy C, Nguyen B, Sethi M, Singh G, Smith K, Sorniotti A, Stathakopoulou C, Vukolić M, Cocco S W, Yellick J (2018) Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the thirteenth EuroSys conference, EuroSys ’18. ACM, New York, pp 30:1–30:15. https://doi.org/10.1145/3190508.3190538/. http://doi.acm.org/10.1145/3190508.3190538

  2. Andrychowicz M, Dziembowski S, Malinowski D, Mazurek Ł (2014) Modeling bitcoin contracts by timed automata. In: Legay A, Bozga M (eds) Formal modeling and analysis of timed systems. Springer International Publishing, Cham, pp 7–22

  3. Aste T, Tasca P, Matteo T D (2017) Blockchain technologies: the foreseeable impact on society and industry. Computer 50(9):18–28. https://doi.org/10.1109/MC.2017.3571064

    Article  Google Scholar 

  4. Bach L, Mihaljevic B, Zagar M (2018) Comparative analysis of blockchain consensus algorithms. In: 2018 41st International convention on information and communication technology, electronics and microelectronics (MIPRO). IEEE, pp 1545–1550

  5. Beck R (2018) Beyond bitcoin: the rise of blockchain world. Computer 51(2):54–58. https://doi.org/10.1109/MC.2018.1451660

    Article  Google Scholar 

  6. Bentov I, Lee C, Mizrahi A, Rosenfeld M (2014) Proof of activit y: extending bitcoin’s proof of work via proof of stake. SIGMETRICS Perform Eval Rev 42(3):34–37. https://doi.org/10.1145/2695533.2695545

    Article  Google Scholar 

  7. Brown R G, Carlyle J, Grigg I, Hearn M (2016) Corda: an introduction. R3 CEV. August 1, 15

  8. Budak C, Goel S, Rao J, Zervas G (2016) Understanding emerging threats to online advertising. In: Proceedings of the 2016 ACM conference on economics and computation, EC ’16. ACM, New York, pp 561–578. https://doi.org/10.1145/2940716.2940787

  9. Caro M P, Ali M S, Vecchio M, Giaffreda R (2018) Blockchain-based traceability in agri-food supply chain management: a practical implementation. In: 2018 IoT vertical and topical summit on agriculture—Tuscany (IOT Tuscany), pp 1–4. https://doi.org/10.1109/IOT-TUSCANY.2018.8373021

  10. Castro M, Liskov B (1999) Practical byzantine fault tolerance. In: Proceedings of the third symposium on operating systems design and implementation, OSDI ’99. USENIX Association, Berkeley, pp 173–186. http://dl.acm.org/citation.cfm?id=296806.296824

  11. Dennis R, Disso J P (2019) An analysis into the scalability of bitcoin and ethereum. In: Third international congress on information and communication technology. Springer, pp 619–627

  12. Dhumwad S, Sukhadeve M, Naik C, Manjunath KN, Prabhu S (2017) A peer to peer money transfer using sha256 and merkle tree. In: Annual international conference on advanced computing and communications, pp 40–43. http://eprints.manipal.edu/id/eprint/150090

  13. Ding Y, Luo D, Xiang H, Tang C, Liu L, Zou X, Li S, Wang Y (2019) A blockchain-based digital advertising media promotion system. In: International conference on security and privacy in new computing environments. Springer, pp 472–484

  14. Estrada-Jiménez J, Parra-Arnau J, Rodríguez-Hoyos A, Forné J (2017) Online advertising: analysis of privacy threats and protection approaches. Comput Commun 100(1):32–51. https://doi.org/10.1016/j.comcom.2016.12.016. http://www.sciencedirect.com/science/article/pii/S0140366416307083

    Article  Google Scholar 

  15. Feng X, Ma J, Miao Y, Meng Q, Liu X, Jiang Q, Li H (2019) Pruneable sharding-based blockchain protocol. Peer-to-Peer Netw Appl 12(4):934–950. https://doi.org/10.1007/s12083-018-0685-6

    Article  Google Scholar 

  16. Freund D A (2018) Economic incentives and blockchain security. J Secur Oper Custody 10 (1):67–76

    Google Scholar 

  17. Hjalmarsson FP, Hreioarsson GK, Hamdaqa M, Hjalmtysson G (2018) Blockchain-based e-voting system. In: 2018 IEEE 11th international conference on cloud computing (CLOUD), pp 983–986. https://doi.org/10.1109/CLOUD.2018.00151

  18. Huang D, Ma X, Zhang S (2020) Performance analysis of the raft consensus algorithm for private blockchains. IEEE Trans Syst Man Cybern: Syst 50(1):172–181. https://doi.org/10.1109/TSMC.2019.2895471

    Article  Google Scholar 

  19. Hyperledger (2018) A blockchain benchmark framework to measure performance of multiple blockchain solutions. https://github.com/hyperledger/caliper

  20. Karame G (2016) On the security and scalability of bitcoin’s blockchain. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, CCS ’16. https://doi.org/10.1145/2976749.2976756. ACM, New York, pp 1861–1862

  21. Katsumata S, Motohashi E, Nishimoto A, Toyosawa E (2017) The contents-based website classification for the internet advertising planning: an empirical application of the natural language analysis. Rev Socionetwork Strateg 11(2):129–142. https://doi.org/10.1007/s12626-017-0007-0

    Article  Google Scholar 

  22. Kiayias A, Russell A, David B, Oliynykov R (2017) Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Annual international cryptology conference. Springer, pp 357–388

  23. Korpela K, Hallikas J, Dahlberg T (2017) Digital supply chain transformation toward blockchain integration. In: Proceedings of the 50th Hawaii international conference on system sciences, pp 4182–4191

  24. Kosba A, Miller A, Shi E, Wen Z, Papamanthou C (2016) Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE symposium on security and privacy (SP). IEEE, pp 839–858

  25. Kotila M, Cuevas Rumin R, Dhar S (2016) Compendium of ad fraud knowledge for media investors. Report ETLA Reports No 68, WFA Global Transparency Group, Brussels, Belgium. https://pub.etla.fi/ETLA-Raportit-Reports-68.pdf

  26. Larimer D (2017) Dpos consensus algorithm–the missing whitepaper. Tech. rep. Steemit

  27. Lauslahti K, Mattila J, Seppälä T (2017) Smart contracts–how will blockchain technology affect contractual practices? Report ETLA Reports No 68, ETLA. The Research Institute of the Finnish Economy. https://pub.etla.fi/ETLA-Raportit-Reports-68.pdf

  28. Li Z, Kang J, Yu R, Ye D, Deng Q, Zhang Y (2018) Consortium blockchain for secure energy trading in industrial internet of things. IEEE Trans Ind Inf 14(8):3690–3700. https://doi.org/10.1109/TII.2017.2786307

    Google Scholar 

  29. Li H, Pei L, Liao D, Sun G, Xu D (2019) Blockchain meets vanet: an architecture for identity and location privacy protection in vanet. Peer-to-Peer Netw Appl 12(5):1178–1193. https://doi.org/10.1007/s12083-019-00786-4

    Article  Google Scholar 

  30. Kotila M, Cuevas Rumin R, Dhar S (2016) Compendium of ad fraud knowledge for media investors. WFA Global Transparency Group,Brussels, Belgium Universidad Carlos III de Madrid(Tech Rep)

  31. Markovic M (2007) Data protection techniques, cryptographic protocols and pki systems in modern computer networks. In: 2007 14th International workshop on systems, signals and image processing and 6th EURASIP conference focused on speech and image processing, multimedia communications and services, pp 13–24. https://doi.org/10.1109/IWSSIP.2007.4381086

  32. Merkle R (1979) Secrecy, authentication, and public key systems. Ph. D Thesis. Stanford University

  33. Müller L (2018) Transforming online advertising: a user centric approach to bridge the gap. In: Proceedings of the 2018 ACM SIGMIS conference on computers and people research, SIGMIS-CPR’18. https://doi.org/10.1145/3209626.3209632. ACM, New York, pp 181–182

  34. Nakamoto S (2008) Bitcoin: a peer-to-peer electronic cash system. Tech. rep. https://bitcoin.org/bitcoin.pdf

  35. Nasir Q, Qasse I A, Abu Talib M, Nassif A B (2018) Performance analysis of hyperledger fabric platforms. Secur Commun Netw 2018:3976093

    Article  Google Scholar 

  36. Pärssinen M, Kotila M, Cuevas R, Phansalkar A, Manner J (2018) Is blockchain ready to revolutionize online advertising? IEEE Access 6:54884–54899. https://doi.org/10.1109/ACCESS.2018.2872694

    Article  Google Scholar 

  37. Pastor Valles A (2016) An entropy-based methodology for detecting online advertising fraud at scale. Ph.D. thesis. Universidad Carlos III de Madrid, Spain

  38. PwC: Iab internet advertising revenue report—2016 full-year results. Tech. rep., Interactive Advertising Bureau (IAB) and PricewaterhouseCoopers (PwC) (2017). https://doi.org/https://www.iab.com/wp-content/uploads/2016/04/IAB_Internet_Advertising_Revenue_Report_FY_2016.pdfReport_FY_2016.pdf

  39. Rouhani S, Deters R (2017) Performance analysis of ethereum transactions in private blockchain. In: 2017 8th IEEE international conference on software engineering and service science (ICSESS), pp 70–74. https://doi.org/10.1109/ICSESS.2017.8342866

  40. Saberi S, Kouhizadeh M, Sarkis J, Shen L (2019) Blockchain technology and its relationships to sustainable supply chain management. Int J Prod Res 57(7):2117–2135. https://doi.org/10.1080/00207543.2018.1533261

    Article  Google Scholar 

  41. Thakkar P, Nathan S, Viswanathan B (2018) Performance benchmarking and optimizing hyperledger fabric blockchain platform. In: 2018 IEEE 26th international symposium on modeling, analysis, and simulation of computer and telecommunication systems (MASCOTS). IEEE, pp 264–276

  42. Wood G (2014) Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151:1–32

    Google Scholar 

  43. Yang W, Garg S, Raza A, Herbert D, Kang B (2018) Blockchain: trends and future. In: Yoshida K, Lee M (eds) Knowledge management and acquisition for intelligent systems. Springer International Publishing, Cham, pp 201–210

  44. Yang X, Yi X, Nepal S, Han F (2018) Decentralized voting: a self-tallying voting system using a smart contract on the ethereum blockchain. In: Hacid H, Cellary W, Wang H, Paik H Y, Zhou R (eds) Web information systems engineering—WISE 2018. Springer International Publishing, Cham, pp 18–35

  45. Youssef J R, Zacharewicz G, Chen D (2016) Developing an enterprise operating system (eos)-requirements and architecture. In: 2016 IEEE 25th international conference on enabling technologies: infrastructure for collaborative enterprises (WETICE). IEEE, pp 130–135

  46. Yu S, Wang G, Liu X, Niu J (2018) Security and privacy in the age of the smart internet of things: an overview from a networking perspective. IEEE Commun Mag 56(9):14–18

    Article  Google Scholar 

  47. Zahnentferner J (2018) Chimeric ledgers: translating and unifying utxo-based and account-based cryptocurrencies. IACR Cryptology ePrint Archive 2018:262

    Google Scholar 

  48. Zhang Y, Xu C, Cheng N, Li H, Yang H, Shen X (2020) Chronos++: an accurate blockchain-based time-stamping scheme for cloud storage. IEEE Trans Serv Comput 13 (2):216–229

    Google Scholar 

  49. Zhang Y, Xu C, Ni J, Li H, Shen X Blockchain-assisted public-key encryption with keyword search against keyword guessing attacks for cloud storage. IEEE Trans Cloud Comput 1–1 (accepted 2019, to appear). https://doi.org/10.1109/TCC.2019.2923222

  50. Zhao W, Wang D (2010) Study on internet advertising placement problem. In: 2010 International conference on logistics systems and intelligent management (ICLSIM), vol 3, pp 1798–1801. https://doi.org/10.1109/ICLSIM.2010.5461317

  51. Zheng Z, Xie S, Dai H, Chen X, Wang H (2017) An overview of blockchain technology: architecture, consensus, and future trends. In: 2017 IEEE International congress on big data (BigData Congress), pp 557–564. https://doi.org/10.1109/BigDataCongress.2017.85

  52. Zheng Z, Xie S, Dai H, Chen X, Wang H (2017) An overview of blockchain technology: architecture, consensus, and future trends. In: 2017 IEEE International congress on big data (BigData Congress). IEEE, pp 557–564

  53. Zheng Q, Li Y, Chen P, Dong X (2018) An innovative ipfs-based storage model for blockchain. In: 2018 IEEE/WIC/ ACM international conference on web intelligence (WI). IEEE, pp 704–708

Download references

Acknowledgements

This research is supported in part by the National Natural Science Foundation of China under projects 61772150, 61862012 and 61962012, the Guangxi Key R&D Program under project AB17195025, the Guangxi Natural Science Foundation under grants 2018GXNSFDA281054, 2018GXNSFAA281232, 2019GXNSFFA245015, 2019GXNSFGA245004 and AD19245048, the Peng Cheng Laboratory Project of Guangdong Province PCL2018KP004, and the Guangxi Key Laboratory of Cryptography and Information Security under grants GCIS201929, GCIS201930 and GCIS201924.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujue Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Luo, D., Xiang, H. et al. Design and implementation of blockchain-based digital advertising media promotion system. Peer-to-Peer Netw. Appl. 14, 482–496 (2021). https://doi.org/10.1007/s12083-020-00984-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-020-00984-5

Keywords

Navigation