Skip to main content
Log in

Enhanced electrochemical performance of the YBa0.5Sr0.5Co1.4Cu0.6O5+δ cathode material by Sm0.2Ce0.8O1.9 incorporation for solid oxide fuel cells application

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The performance of YBa0.5Sr0.5Co1.4Cu0.6O5+δ(YBSCCO)–Sm0.2Ce0.8O1.9 (SDC) composite cathode for SOFC is investigated in this paper. YBSCCO and SDC oxides are synthesized by the sol–gel method. The XRD result reveals that no obvious chemical reaction occurs after sintering the mixture of the YBSCCO and SDC at 850 °C for 20 h. The thermal expansion behavior shows that the YBSCCO–xSDC composite cathode has the suitable TEC values (13.3–11.2 × 10−6 K−1) for the common electrolyte. In different proportions of the composite cathode, YBSCCO–30SDC shows the lowest polarization resistance values, which are only about 0.022 Ω cm2 at 850 °C and 0.034 Ω cm2 at 800 °C. The electrolyte-supported single cell using YBSCCO–30SDC cathode is fabricated, and the peak power densities values are 567 and 432 mW cm−2 at 850 and 800 °C, respectively.

Highlights

  • Layered-perovskite YBSCCO cathode is prepared by a sol–gel method.

  • The YBa0.5Sr0.5Co1.4Cu0.6O5+δ(YBSCCO)–Sm0.2Ce0.8O1.9(SDC) composites are evaluated as cathodes for SOFC.

  • The TEC values of YBSCCO–SDC composite cathodes are decreased with SDC addition.

  • The addition of SDC to YBSCCO cathode reduces the polarization resistance.

  • High power density of 567 mW cm−2 at 850 °C for YBSCCO–30SDC is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: Fundamentals and applications. Renew Sustain Energy Rev 32:810–853

    Article  CAS  Google Scholar 

  2. Chen Y, Zhou W, Ding D, Liu M, Ciucci F, Tade M, Shao Z (2015) Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline earth metal elements. Adv Energy Mater 5:1500537

    Article  Google Scholar 

  3. Yang Z, Guo M, Wang N, Ma C, Wang J, Han M (2017) A short review of cathode poisoning and corrosion in solid oxide fuel cell. Int J Hydrog Energy 42:24948–24959

    Article  CAS  Google Scholar 

  4. Chen Y, Yoo S, Choi Y, Kim JH, Ding Y, Pei K, Murphy R, Zhang Y, Zhao B, Zhang W, Chen H, Chen Y, Yuan W, Yang C, Liu M (2018) A highly active, CO2- tolerant electrode for the oxygen reduction reaction. Energy Environ Sci 11:2458–2466

    Article  CAS  Google Scholar 

  5. Liu JC, Jin FJ, Yang X, Niu BB, Li YF, He T (2019) YBaCo2O5+δ-based double-perovskite cathodes for intermediate-temperature solid oxide fuel cells with simultaneously improved structural stability and thermal expansion properties. Electrochim Acta 297:344–354

    Article  CAS  Google Scholar 

  6. Li N, Lü Z, Wei B, Huang XQ, Chen KF, Zhang YH, Su WH (2008) Characterization of GdBaCo2O5+δ cathode for IT-SOFCs. J Alloy Compd 454:274–279

    Article  CAS  Google Scholar 

  7. Kim JH, Manthiram A (2008) LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells. J Electrochem Soc 155:385–390

    Article  Google Scholar 

  8. Lin B, Zhang S, Zhang L, Bi L, Ding H, Liu X, Gao J, Meng G (2008) Prontonic ceramic membrane fuel cells with layered GdBaCo2O5+x cathode prepared by gel-casting and suspension spray. J Power Sources 177:330–333

    Article  CAS  Google Scholar 

  9. Zhou Q, He T, Ji Y (2008) Electrochemical performances of LaBaCuFeOx and LaBaCuCoOx as potential cathode materials for intermediate-temperature solid oxide fuel cells. J Power Sources 185:754–758

    Article  CAS  Google Scholar 

  10. Chavez E, Mueller M, Mogni L, Caneiro A (2009) Study of LnBaCo2O6-δ (Ln = Pr, Nd, Sm and Gd) double perovskites as new cathode material for IT-SOFC. J Phys 167:012043–1-6

    Google Scholar 

  11. Zhang K, Ge L, Ran R, Shao ZP, Liu SM (2008) Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Mater 56:4876–4889

    Article  CAS  Google Scholar 

  12. Liu Y (2009) YBaCo2O5+δ as a new cathode material for zirconia-based solid oxide fuel cells. J Alloy Compd 477:860–862

    Article  CAS  Google Scholar 

  13. Kim YN, Kim JH (2010) Effect of Fe substitution on the structure and properties of LnBaCo2-xFexO5+δ (Ln = Nd and Gd) cathodes. J Power Sources 195:6411–6419

    Article  CAS  Google Scholar 

  14. Jiang L, Wei T, Zeng R, Zhang WX, Huang YH (2013) Thermal and electrochemical properties of PrBa0.5Sr0.5Co2-xFexO5+δ (x = 0.5, 1.0, 1.5) cathode materials for solid-oxide fuel cells. J Power Sources 232:279–285

    Article  CAS  Google Scholar 

  15. Zhang YJ, Yu B, Lü SQ, Meng XW, Zhao XY, Ji Y, Wang YX, Fu CW, Liu XY, Li XY, Sui YR, Lang JH, Yang JH (2014) Effect of Cu doping on YBaCo2O5+δas cathode for intermediate-temperature solid oxide fuel cells. Electrochim Acta 134:107–115

    Article  CAS  Google Scholar 

  16. Kim JH, Cassidy M, Irvine JTS, Bae J (2010) Electrochemical investigation of composite cathodes with SmBa0.5Sr0.5Co2O5+δ cathodes for intermediate temperature-operating solid oxide fuel cell. Chem Mater 22(3):883–892

    Article  CAS  Google Scholar 

  17. Zhao F, Wang SW, Brinkman K, Chen FL (2010) Layered perovskite PrBa0.5Sr0.5Co2O5+δ as high performance cathode for solid oxide fuel cells using oxide proton-conducting electrolyte. J Power Sources 195:5468–5473

    Article  CAS  Google Scholar 

  18. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst A32:751

    Article  CAS  Google Scholar 

  19. Li SY, Lü Z, Wei B, Huang XQ, Miao JP, Liu ZG, Su WH (2008) Performances of Ba0.5Sr0.5Co0.6Fe0.4O3-δ–Ce0.8Sm0.2O1.9 composite cathode materials for IT-SOFC. J Alloy Compd 448:116–121

    Article  CAS  Google Scholar 

  20. West M, Manthiram A (2013) Layered LnBa1-xSrxCoCuO5+δ (Ln = Nd and Gd) perovskite cathodes for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy 38:3364–3372

    Article  CAS  Google Scholar 

  21. Lee SJ, Kim DS, Jo SH, Muralidharan P, Kim DK (2012) Electrochemical properties of GdBaCo2/3Fe2/3Cu2/3O5+δ–CGO composite cathodes for solid oxide fuel cell. Ceram Int 38:S493–S496

    Article  CAS  Google Scholar 

  22. Zhou QJ, Wang F, Shen Y, He TM (2010) Performances of LnBaCo2O5+δ–Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells. J Power Sources 195:2174–2181

    Article  CAS  Google Scholar 

  23. Ji YL, Wang H, Zhang H (2017) Gd0.8Sr0.2CoO3-δ–Sm0.1Ce0.9O1.95 composite cathode for intermediate temperature solid oxide fuel cells. Mater Res Bull 85:30–34

    Article  CAS  Google Scholar 

  24. Baqué L, Padmasree KP, Ceniceros RMA, Troiani H, Serquis A, Soldati A (2016) Improved Sr0.6La0.4Co0.8Fe0.2O3-δ/Ce0.8Y0.2O2-δ interface for IT-SOFC applications. Int J Hydrog Energy 41:1958–1965

    Article  Google Scholar 

  25. Li PZ, Wang ZH, Huang XQ, Zhu L, Cao ZQ, Zhang YH, Wei B, Zhu XB, Lü Z (2017) Enhanced electrochemical performance of co-synthesized La2NiO4+δ-Ce0.55La0.45O2-δ composite cathode for IT-SOFCs. J Alloy Compd 705:105–111

    Article  CAS  Google Scholar 

  26. Zhao S, Tian N, Yu J (2020) Performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ/Ce0.85Sm0.15O2-δ-CuO as a cathode for intermediate temperature solid oxide fuel cells. J Alloy Compd 825:154013

    Article  CAS  Google Scholar 

  27. Kim JD, Kim GD, Moon JW, Park Y, Lee WH, Kobayashi K, Nagai M, Kim CE (2001) Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy. Solid State Ion 143:379–389

    Article  CAS  Google Scholar 

  28. Chen X, Wang JQ, Liang QW, Sun X, Zhu XF, Zhou DF, Meng J (2020) Pr2NiO4-Pr0.2Ce0⋅8O1.9 composite cathode as a potential cathode material for intermediate temperature solid oxide fuel cells. Solid State Sciences 100:106108

    Article  CAS  Google Scholar 

  29. Steele BCH (1996) Survey of materials selection for ceramic fuel cells II. Cathodes and anodes. Solid State Ion 86-88:1223–1234

    Article  CAS  Google Scholar 

  30. Gu HT, Chen H, Gao L, Guo LC (2009) Electrochemical properties of LaBaCo2O5+δ-Sm0.2Ce0.8O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells. Electrochimica Acta 54:7094–7098

    Article  CAS  Google Scholar 

  31. Kim JH, Kim Y, Connor PA, Irvine JTS, Baea J, Zhou W (2009) Structural, thermal and electrochemical properties of layered perovskite SmBaCo2O5+δ, a potential cathode material for intermediate-temperature solid oxide fuel cells. J Power Sources 194:704–711

    Article  CAS  Google Scholar 

  32. Orrsam AA, Kalpana S, Venkataraman T (2020) Investigating the effect of Cu-doping on the electrochemical properties of perovskite-type Ba0.5Sr0.5Fe1-xCuxO3-δ (0 ≤ x ≤ 0.20) cathodes. J Power Sources 451:227777

    Article  Google Scholar 

  33. Monica VS, Carolina C, Edouard C, Caroline P, Pascal R, Gilles HG (2019) Performance of La0.5Sr1.5MnOδ Ruddlesden-Popper manganite as electrode material for symmetrical solid oxide fuel cells. Part A. The oxygen reduction reaction. Electrochim Acta 304:415–427

    Article  Google Scholar 

  34. Lee D, Kim DY, Son SJ, Kwon Y, Lee Y, Ahn JH, Joo JH (2019) Simultaneous A- and B- site substituted double perovskite (AA’B2O5+δ) as a new high-performance and redox-stable anode material for solid oxide fuel cells. J Power Sources 434:226743

    Article  CAS  Google Scholar 

  35. Wang S, Yang H, Zheng YF, Ge L, Chen H, Guo LC (2019) Effect of electrolyte composite on the performance of SmBa0.5Sr0.25Ca0.25CoFeO5+δ cathode for IT-SOFCs. Ionics 26:281–291

    Article  CAS  Google Scholar 

  36. Muhammed ASA, Jarot R, Mustafa A, Deni SK, Andanastuti M, Luca S, Mahendra RS (2020) Carbonate‐based lanthanum strontium cobalt ferrite (LSCF)–samarium‐doped ceria (SDC) composite cathode for low‐temperature solid oxide fuel cells. Appl Sci 10:3761

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (nos 51902126 and 61705079), Program for the development of Science and Technology of Jilin province (20180414008GH, 20190701021GH, 20190103039JH, and 20180520182JH), and Open Project of Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University (no. 2016002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangwei Meng or Lizhong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Fu, X., Meng, X. et al. Enhanced electrochemical performance of the YBa0.5Sr0.5Co1.4Cu0.6O5+δ cathode material by Sm0.2Ce0.8O1.9 incorporation for solid oxide fuel cells application. J Sol-Gel Sci Technol 96, 742–752 (2020). https://doi.org/10.1007/s10971-020-05409-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05409-6

Keywords

Navigation