Skip to main content

Advertisement

Log in

Numerical analysis of solidification of PCM in a closed vertical cylinder for thermal energy storage applications

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The solidification dynamics of cylindrical encapsulated PCM have been analyzed under convective boundary conditions that relate to thermal energy storage systems. A three dimensional, transient CFD model has been solved for examinations. Besides the widely used conduction model of solidification, in this study, the effect of natural convection within the liquid layer has been considered in the numerical model. The effects of parameters such as the initial superheating temperature, the encapsulation size, and the heat transfer coefficient at the outer surface of the capsule have been examined in terms of solidification dynamics and extracted energy during the phase change process. It was found that while the diameter of encapsulation significantly affects the solidification and the energy extraction times, the effect of encapsulation height on the solidification and the energy extraction times are not notable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

A :

mushy zone constant

Bi :

Biot number

C p :

specific heat of the PCM [J/(kg K)]

D :

inner diameter of the tube [m]

E :

energy [J]

Gr :

Grashof number (Gr = gβ(T0-Ts)H3ν2)

g :

gravity [m/s2]

H :

height of the tube [m]

h :

enthalpy [J/kg

h :

external heat transfer coefficient [W/m2K]

k :

thermal conductivity [W/(m K)]]

L :

latent heat of fusion [J/kg]

m :

mass [kg]

n :

shell thickness [m]

P :

pressure [Pa]

Q :

heat transfer rate [W]

\( \dot{q} \) :

heat flux [W/m2]

Ste L :

liquid phase Stefan number (Ste = Cp(T0-Ts)/L)

T :

temperature [K]

t :

time [min]

T b :

bulk temperature [oC]

T :

free stream temperature [oC]

T m :

melting temperature [oC]

T s :

solidification temperature [oC]

T 0 :

initial temperature [oC]

V :

velocity [m/s]

β :

thermal expansion coefficient [1/K]

ρ :

density [kg/m3]

μ :

dynamic viscosity [kg/(m s)]

ν :

kinematic viscosity [m2/s]

φ :

liquid fraction

l :

latent

r :

radial direction

s :

sensible

w :

wall

θ :

angular direction

z :

axial direction

References

  1. Nazir H, Batool M, Bolivar Osorio FJ, Isaza-Ruiz M, Xu X, Vignarooban K, Phelan P, Inamuddin, Kannan AM (2019) Recent developments in phase change materials for energy storage applications: A review. Int J Heat Mass Transf 129:491–523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126

    Article  Google Scholar 

  2. Abokersh MH, Osman M, El-Baz O, El-Morsi M, Sharaf O (2017) Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS). Int J Energy Res 33:23–40. https://doi.org/10.1002/er.3765

    Article  Google Scholar 

  3. Zhang H, Baeyens J, Cáceres G, Degrève J, Lv Y (2016) Thermal energy storage: recent developments and practical aspects. Prog Energy Combust Sci 53:1–40. https://doi.org/10.1016/j.pecs.2015.10.003

    Article  Google Scholar 

  4. Sarbu I (2018) A comprehensive review of thermal energy storage. Sustainability 10:191. https://doi.org/10.3390/su10010191

    Article  Google Scholar 

  5. Elbahjaoui R, El Qarnia H, El Ganaoui M (2017) Numerical study of the melting of Nano-PCM in a rectangular storage unit heated by upward heat transfer fluid. Energy Procedia 139:86–91. https://doi.org/10.1016/j.egypro.2017.11.177

    Article  Google Scholar 

  6. Li W, Li SG, Guan S, Wang Y, Zhang X, Liu X (2017) Numerical study on melt fraction during melting of phase change material inside a sphere. Int J Hydrog Energy 42:18232–18239. https://doi.org/10.1016/j.ijhydene.2017.04.136

    Article  Google Scholar 

  7. Ebadi S, Al-Jethelah M, Tasnim SH, Mahmud S (2018) An investigation of the melting process of RT-35 lled circular thermal energy storage system. Open Phys 16:574–580

    Article  Google Scholar 

  8. Ebadi S, Humaira Tasnim S, Abbas Aliabadi A, Mahmud S (2018) Geometry and nanoparticle loading effects on the bio-based nano-PCM filled cylindrical thermal energy storage system. Appl Therm Eng 141:724–740. https://doi.org/10.1016/j.applthermaleng.2018.05.091

    Article  Google Scholar 

  9. Seddegh S, Tehrani SSM, Wang X, Cao F, Taylor RA (2018) Comparison of heat transfer between cylindrical and conical vertical shell-and-tube latent heat thermal energy storage systems. Appl Therm Eng 130:1349–1362. https://doi.org/10.1016/j.applthermaleng.2017.11.130

    Article  Google Scholar 

  10. Bechiri M, Mansouri K (2019) Study of heat and fluid flow during melting of PCM inside vertical cylindrical tube. Int J Therm Sci 135:235–246. https://doi.org/10.1016/j.ijthermalsci.2018.09.017

    Article  Google Scholar 

  11. Ebadi S, Tasnim SH, Aliabadi AA, Mahmud S (2018) Melting of nano-PCM inside a cylindrical thermal energy storage system: numerical study with experimental verification. Energy Convers Manag 166:241–259. https://doi.org/10.1016/j.enconman.2018.04.016

    Article  Google Scholar 

  12. Motahar S, Alemrajabi AA, Khodabandeh R (2017) Experimental investigation on heat transfer characteristics during melting of a phase change material with dispersed TiO2 nanoparticles in a rectangular enclosure. Int J Heat Mass Transf 109:134–146. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.109

    Article  Google Scholar 

  13. Das N, Takata Y, Kohno M, Harish S (2016) Melting of graphene based phase change nanocomposites in vertical latent heat thermal energy storage unit. Appl Therm Eng 107:101–113. https://doi.org/10.1016/j.applthermaleng.2016.06.166

    Article  Google Scholar 

  14. Dhaidan NS, Khodadadi JM (2015) Melting and convection of phase change materials in different shape containers: a review. Renew Sust Energ Rev 43:449–477. https://doi.org/10.1016/j.rser.2014.11.017

    Article  Google Scholar 

  15. Archibold AR, Yogi Goswami D, Rahman MM, Stefanakos EK (2015) Multi-mode heat transfer analysis during freezing of an encapsulated storage medium. Int J Heat Mass Transf 84:600–609. https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.076

    Article  Google Scholar 

  16. Nazzi Ehms JH, De Césaro Oliveski R, Oliveira Rocha LA, Biserni C (2018) Theoretical and numerical analysis on phase change materials (PCM): a case study of the solidification process of erythritol in spheres. Int J Heat Mass Transf 119:523–532. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.124

    Article  Google Scholar 

  17. Bilir L, Ilken Z (2005) Total solidification time of a liquid phase change material enclosed in cylindrical/spherical containers. Appl Therm Eng 25:1488–1502. https://doi.org/10.1016/j.applthermaleng.2004.10.005

    Article  Google Scholar 

  18. Motahar S, Alemrajabi AA, Khodabandeh R (2017) Experimental study on solidification process of a phase change material containing TiO2 nanoparticles for thermal energy storage. Energy Convers Manag 138:162–170. https://doi.org/10.1016/j.enconman.2017.01.051

    Article  Google Scholar 

  19. Sefidan AM, Taghilou M, Mohammadpour M, Sojoudi A (2017) Effects of different parameters on the discharging of double-layer PCM through the porous channel. Appl Therm Eng 123:592–602. https://doi.org/10.1016/j.applthermaleng.2017.05.131

    Article  Google Scholar 

  20. A.S. Bejan, A. Labihi, C.V. Croitoru, T. Catalina, H. Chehouani (2018) Experimental investigation of the charge / discharge process for an organic PCM macroencapsulated in an aluminium rectangular cavity, 01004

  21. Peter A, Cornelia O (2017) Study on solid liquid interface heat transfer of PCM under simultaneous charging and discharging ( SCD ) in horizontal cylinder annulus, heat mass Transf. https://doi.org/10.1007/s00231-017-1971-1

    Book  Google Scholar 

  22. Bechiri M, Mansouri K (2016) Analytical study of heat generation effects on melting and solidification of nano-enhanced PCM inside a horizontal cylindrical enclosure. Appl Therm Eng 104:779–790. https://doi.org/10.1016/j.applthermaleng.2016.05.105

    Article  Google Scholar 

  23. Sparrow EM, Broadbent JA (1983) Freezing in a vertical tube. J Heat Transf 105:217–225. https://doi.org/10.1115/1.3245566

    Article  Google Scholar 

  24. Menon AS, Weber ME, Mujumdar AS (1983) The dynamics of energy storage for paraffin wax in cylindrical containers. Can J Chem Eng 61:647–653. https://doi.org/10.1002/cjce.5450610505

    Article  Google Scholar 

  25. Kim Y, Honda T, Kanzawa A (1989) The role of natural convection during melting and solidification of Pcm in a vertical cylinder. Chem Eng Commun 84:43–60. https://doi.org/10.1080/00986448908940334

    Article  Google Scholar 

  26. Kalaiselvam S, Veerappan M, Arul Aaron A, Iniyan S (2008) Experimental and analytical investigation of solidification and melting characteristics of PCMs inside cylindrical encapsulation. Int J Therm Sci 47:858–874. https://doi.org/10.1016/j.ijthermalsci.2007.07.003

    Article  Google Scholar 

  27. Mahamudur Rahman M, Hu H, Shabgard H, Boettcher P, Sun Y, McCarthy M (2016) Experimental characterization of inward freezing and melting of additive-enhanced phase-change materials within millimeter-scale cylindrical enclosures. J Heat Transf 138:1–13. https://doi.org/10.1115/1.4033007

    Article  Google Scholar 

  28. Kapilow D, Hsuan YG, Sun Y, McCarthy M (2018) Convective melting and freezing of phase change materials encapsulated within small diameter polymer tubes. Exp Thermal Fluid Sci 92:259–269. https://doi.org/10.1016/j.expthermflusci.2017.11.012

    Article  Google Scholar 

  29. Pahamli Y, Hosseini MJ, Ranjbar AA, Bahrampoury R (2016) Analysis of the effect of eccentricity and operational parameters in PCM-filled single-pass shell and tube heat exchangers. Renew Energy 97:344–357. https://doi.org/10.1016/j.renene.2016.05.090

    Article  Google Scholar 

  30. Kahwaji S, Johnson MB, Kheirabadi AC, Groulx D, White MA (2018) A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications. Energy 162:1169–1182. https://doi.org/10.1016/j.energy.2018.08.068

    Article  Google Scholar 

  31. Brent AD, Voller VR, Reid KJ (1988) Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transf 13:297–318. https://doi.org/10.1080/10407788808913615

    Article  Google Scholar 

  32. Voller VR, Prakash C (1987) A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int J Heat Mass Transf 30:1709–1719. https://doi.org/10.1016/0017-9310(87)90317-6

    Article  Google Scholar 

  33. Patankar SV (1980) Numerical heat transfer and fluid flow. Taylor & Francis Group

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Projects Fund of Yozgat Bozok University [BAP 6602A-MMF/18-184].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Izgi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izgi, B., Arslan, M. Numerical analysis of solidification of PCM in a closed vertical cylinder for thermal energy storage applications. Heat Mass Transfer 56, 2909–2922 (2020). https://doi.org/10.1007/s00231-020-02911-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02911-z

Keywords

Navigation