Skip to main content
Log in

Transition of granular flow patterns in a conical hopper based on superquadric DEM simulations

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Granular flow exists widely in nature or industrial production, and particle shape is a crucial factor affecting the flow characteristics of granular materials. In this study, spherical and cylindrical particles are constructed by superquadric equations, and the discharging processes of granular materials in the conical silo are simulated by the discrete element method. Subsequently, the effects of blockiness, aspect ratio and hopper angle on the flow characteristics are investigated. The results show that the discharge rates of cylindrical particles increase and flow fluctuation decreases as the blockiness parameters and aspect ratios decrease or the hopper angles increase. Compared with spherical particles, cylindrical particles are more likely to cause interlocking and hinder sliding or rotation between particles, which results in intermittent granular flow. Furthermore, the flow pattern transition is dominated by the particle shape and hopper angle. The critical height between the mass and funnel flows decreases as the blockiness parameter decreases or the aspect ratio and hopper angle increase and reaches a steady state. However, the effect of particle shape on the flow pattern transition becomes negligible for a larger hopper angle. When the hopper angle is larger than 60°, the granular system basically has a uniform vertical velocity and all particles are in the mass flow. On the microscopic scale, cylindrical particles have a larger average coordination number and greater possibility of strong contact force than spherical particles, which may further cause the flow pattern transition of granular materials on the macroscopic scale.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Cundall, P.A., Strack, O.D.L.: A Discrete numerical mode for granular assemblies. Géotechnique 29(1), 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  2. Zhao, B., An, X., Zhao, H., Shen, L., Sun, X., Zhou, Z.: DEM simulation of the local ordering of tetrahedral granular matter. Soft Matter 15(10), 2260–2268 (2019). https://doi.org/10.1039/c8sm02166j

    Article  ADS  Google Scholar 

  3. Kodicherla, S.P.K., Gong, G., Yang, Z.X., Krabbenhoft, K., Fan, L., Moy, C.K.S., Wilkinson, S.: The influence of particle elongations on direct shear behaviour of granular materials using DEM. Granul. Matter 21, 86 (2019). https://doi.org/10.1007/s10035-019-0947-x

    Article  Google Scholar 

  4. Li, Y., Ji, S.: A geometric algorithm based on the advancing front approach for sequential sphere packing. Granul. Matter 20, 59 (2018). https://doi.org/10.1007/s10035-018-0829-7

    Article  ADS  Google Scholar 

  5. Zhao, Y., Yang, S., Zhang, L., Chew, J.W.: Understanding the varying discharge rates of lognormal particle size distributions from a hopper using the Discrete Element Method. Powder Technol. 342, 356–370 (2019). https://doi.org/10.1016/j.powtec.2018.09.080

    Article  Google Scholar 

  6. Yan, Y., Ji, S.: Energy conservation in a granular shear flow and its quasi-solid–liquid transition. Part. Sci. Technol. 27(2), 126–138 (2009). https://doi.org/10.1080/02726350902775970

    Article  Google Scholar 

  7. Vijayan, A., Annabattula, R.K.: Effect of particle flow dynamics on the fabric evolution in spherical granular assemblies filled under gravity. Powder Technol. 356, 909–919 (2019). https://doi.org/10.1016/j.powtec.2019.09.027

    Article  Google Scholar 

  8. Gallego, E., Fuentes, J.M., Wiącek, J., Villar, J.R., Ayuga, F.: DEM analysis of the flow and friction of spherical particles in steel silos with corrugated walls. Powder Technol. 355, 425–437 (2019). https://doi.org/10.1016/j.powtec.2019.07.072

    Article  Google Scholar 

  9. Xie, C., Ma, H., Zhao, Y.: Investigation of modeling non-spherical particles by using spherical discrete element model with rolling friction. Eng. Anal. Bound. Elem. 105, 207–220 (2019). https://doi.org/10.1016/j.enganabound.2019.04.013

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhao, S., Evans, T.M., Zhou, X.: Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects. Int. J. Solids Struct. 150, 268–281 (2018). https://doi.org/10.1016/j.ijsolstr.2018.06.024

    Article  Google Scholar 

  11. Lu, G., Third, J.R., Müller, C.R.: Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem. Eng. Sci. 127, 425–465 (2015). https://doi.org/10.1016/j.ces.2014.11.050

    Article  Google Scholar 

  12. Kafashan, J., Wiącek, J., Abd Rahman, N., Gan, J.: Two-dimensional particle shapes modelling for DEM simulations in engineering: a review. Granul. Matter. 21, 80 (2019). https://doi.org/10.1007/s10035-019-0935-1

    Article  Google Scholar 

  13. Li, C., Peng, Y., Zhang, P., Zhao, C.: The contact detection for heart-shaped particles. Powder Technol. 346, 85–96 (2019). https://doi.org/10.1016/j.powtec.2019.01.079

    Article  Google Scholar 

  14. Zhao, S., Zhao, J.: A poly-superellipsoid‐based approach on particle morphology for DEM modeling of granular media. Int. J. Numer. Anal. Methods Geomech. 43(13), 2147–2169 (2019). https://doi.org/10.1002/nag.2951

    Article  Google Scholar 

  15. Li, L., Marteau, E., Andrade, J.E.: Capturing the inter-particle force distribution in granular material using LS-DEM. Granul. Matter 21, 43 (2019). https://doi.org/10.1007/s10035-019-0893-7

    Article  Google Scholar 

  16. Khazeni, A., Mansourpour, Z.: Influence of non-spherical shape approximation on DEM simulation accuracy by multi-sphere method. Powder Technol. 332, 265–278 (2018). https://doi.org/10.1016/j.powtec.2018. 03.030

    Article  Google Scholar 

  17. Li, C.X., Zhou, Z.Y., Zou, R.P., Pinson, D., Shen, Y.S., Yu, A.B.: Experimental and numerical investigation on the packing of binary mixtures of spheres and ellipsoids. Powder Technol. 360, 1210–1219 (2020). https://doi.org/10.1016/j.powtec.2019.10.103

    Article  Google Scholar 

  18. Feng, Y.T., Han, K., Owen, D.R.J.: A generic contact detection framework for cylindrical particles in discrete element modelling. Comput. Methods Appl. Mech. Eng. 315, 632–651 (2017). https://doi.org/10.1016/j.cma.2016.11.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Feng, Y.T., Owen, D.R.J.: A 2D polygon/polygon contact model: algorithmic aspects. Eng. Comput. 21(2/3/4), 265–277 (2004). https://doi.org/10.1108/02644400410519785

    Article  MATH  Google Scholar 

  20. Feng, Y.T., Han, K., Owen, D.R.J.: Energy-conserving contact interaction models for arbitrarily shaped discrete elements. Comput. Methods Appl. Mech. Eng. 205–208, 169–177 (2012). https://doi.org/10.1016/j.cma.2011.02.010

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Feng, Y.T., Tan, Y.: On Minkowski difference-based contact detection in discrete/discontinuous modelling of convex polygons/polyhedra. Eng. Comput. 37(1), 54–72 (2019). https://doi.org/10.1108/ec-03-2019-0124

    Article  Google Scholar 

  22. Liu, L., Ji, S.: Bond and fracture model in dilated polyhedral DEM and its application to simulate breakage of brittle materials. Granul. Matter 21, 41 (2019). https://doi.org/10.1007/s10035-019-0896-4

    Article  Google Scholar 

  23. Han, K., Feng, Y.T., Owen, D.R.J.: Polygon-based contact resolution for superquadrics. Int. J. Numer. Methods Eng. 66, 485–501 (2006). https://doi.org/10.1002/nme.1569

    Article  MATH  Google Scholar 

  24. Lu, G., Third, J.R., Müller, C.R.: Critical assessment of two approaches for evaluating contacts between super-quadric shaped particles in DEM simulations. Chem. Eng. Sci. 78(34), 226–235 (2012). https://doi.org/10.1016/j.ces.2012.05.041

    Article  Google Scholar 

  25. Nie, J.-Y., Li, D.-Q., Cao, Z.-J., Zhou, B., Zhang, A.-J.: Probabilistic characterization and simulation of realistic particle shape based on sphere harmonic representation and Nataf transformation. Powder Technol. 360, 209–220 (2020). https://doi.org/10.1016/j.powtec.2019.10.007

    Article  Google Scholar 

  26. Mollon, G., Zhao, J.: 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors. Comput. Methods Appl. Mech. Eng. 279, 46–65 (2014). https://doi.org/10.1016/j.cma.2014.06.022

    Article  ADS  MATH  Google Scholar 

  27. Cleary, P.W.: Effect of rock shape representation in DEM on flow and energy utilisation in a pilot SAG mill. Comput. Particle Mech. 6(3), 461–477 (2019). https://doi.org/10.1007/s40571-019-00226-3

    Article  ADS  Google Scholar 

  28. Williams, J.R., Pentland, A.P.: Superquadrics and modal dynamics for discrete elements in interactive design. Eng. Comput. 9(2), 115–127 (1992). https://doi.org/10.1108/eb023852

    Article  Google Scholar 

  29. Zhong, W., Yu, A., Liu, X., Tong, Z., Zhang, H.: DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol. 302, 108–152 (2016). https://doi.org/10.1016/j.powtec.2016.07.010

    Article  Google Scholar 

  30. Tangri, H., Guo, Y., Curtis, J.S.: Hopper discharge of elongated particles of varying aspect ratio: Experiments and DEM simulations. Chem. Eng. Sci. X. 4, 100040 (2019). https://doi.org/10.1016/j.cesx.2019.100040

    Article  Google Scholar 

  31. Höhner, D., Wirtz, S., Scherer, V.: A study on the influence of particle shape on the mechanical interactions of granular media in a hopper using the discrete element method. Powder Technol. 278, 286–305 (2015). https://doi.org/10.1016/j.powtec.2015.02.046

    Article  Google Scholar 

  32. You, Y., Zhao, Y.: Discrete element modelling of ellipsoidal particles using super-ellipsoids and multi-spheres: a comparative study. Powder Technol. 331, 179–191 (2018). https://doi.org/10.1016/j.powtec.2018. 03.017

    Article  Google Scholar 

  33. Liu, S.D., Zhou, Z.Y., Zou, R.P., Pinson, D., Yu, A.B.: Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper. Powder Technol. 253, 70–79 (2014). https://doi.org/10.1016/j.powtec.2013.11.001

    Article  Google Scholar 

  34. Höhner, D., Wirtz, S., Scherer, V.: Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method. Powder Technol. 235, 614–627 (2013). https://doi.org/10.1016/j.powtec.2012.11.004

    Article  Google Scholar 

  35. Gui, N., Yang, X., Tu, J., Jiang, S.: Numerical study of the motion behaviour of three-dimensional cubic particle in a thin drum. Adv. Powder Technol. 29(2), 426–437 (2018). https://doi.org/10.1016/j.apt.2017.11.033

    Article  Google Scholar 

  36. Cleary, P.W., Sawley, M.L.: DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26(2), 89–111 (2002)

    Article  Google Scholar 

  37. Wang, S., Fan, Y., Ji, S.: Interaction between super-quadric particles and triangular elements and its application to hopper discharge. Powder Technol. 339, 534–549 (2018). https://doi.org/10.1016/j.powtec.2018.08.026

    Article  Google Scholar 

  38. AH, B.: Superquadrics and angle-preserving transformations. IEEE Comput. Graphics Appl. 1(1), 11–23 (1981). https://doi.org/10.1109/MCG.1981.1673799

    Article  Google Scholar 

  39. Peng, D., Hanley, K.J.: Contact detection between convex polyhedra and superquadrics in discrete element codes. Powder Technol. 356, 11–20 (2019). https://doi.org/10.1016/j.powtec.2019.07.082

    Article  Google Scholar 

  40. Kildashti, K., Dong, K., Samali, B.: An accurate geometric contact force model for super-quadric particles. Comput. Methods Appl. Mech. Eng. (2020). https://doi.org/10.1016/j.cma.2019.112774

    Article  MathSciNet  MATH  Google Scholar 

  41. Gan, J., ·Yu, A.B.: DEM simulation of the packing of cylindrical particles. Granul. Matter 22, 22 (2020). https://doi.org/10.1007/s10035-019-0993-4

    Article  Google Scholar 

  42. Ma, H., Zhao, Y.: Investigating the flow of rod-like particles in a horizontal rotating drum using DEM simulation. Granul. Matter. 20, 41 (2018). https://doi.org/10.1007/s10035-018-0823-0

    Article  Google Scholar 

  43. Fritzer, H.P.: Molecular symmetry with quaternions. Spectrochim. Acta Part A. 57, 1919–1930 (2001). https://doi.org/10.1016/S1386-1425(01)00477-2

    Article  ADS  Google Scholar 

  44. Kosenko, I.I.: Integration of the equations of a rotational motion of a rigid body in quaternion algebra. The Euler case. J. Appl. Math. Mech. 62, 193–200 (1998). https://doi.org/10.1016/S0021-8928(98)00025-2

    Article  MathSciNet  MATH  Google Scholar 

  45. Miller, I.I.I.T.F., Eleftheriou, M., Pattnaik, P., Ndirango, A., Newns, D., Martynaa, G.J.: Symplectic quaternion scheme for biophysical molecular dynam. J. Chem. Phys. 116, 8649–8659 (2002). https://doi.org/10.1063/1.1473654

    Article  ADS  Google Scholar 

  46. Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62(13), 3378–3396 (2007). https://doi.org/10.1016/j.ces.2006.12.089

    Article  Google Scholar 

  47. Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63(23), 5728–5770 (2008). https://doi.org/10.1016/j.ces.2008.08.006

    Article  Google Scholar 

  48. Wellmann, C., Lillie, C., Wriggers, P.: A contact detection algorithm for superellipsoids based on the common-normal concept. Eng. Comput. 25(5), 432–442 (2008). https://doi.org/10.1108/02644400810881374

    Article  MATH  Google Scholar 

  49. Houlsby, G.T.: Potential particles: a method for modelling non-circular particles in DEM. Comput. Geotech. 36(6), 953–959 (2009). https://doi.org/10.1016/j.compgeo.2009.03.001

    Article  Google Scholar 

  50. Podlozhnyuk, A., Pirker, S., Kloss, C.: Efficient implementation of superquadric particles in discrete element method within an open-source framework. Comput. Particle Mech. 4(1), 101–118 (2016). https://doi.org/10.1007/s40571-016-0131-6

    Article  ADS  Google Scholar 

  51. Soltanbeigi, B., Podlozhnyuk, A., Papanicolopulos, S.-A., Kloss, C., Pirker, S., Ooi, J.Y.: DEM study of mechanical characteristics of multi-spherical and superquadric particles at micro and macro scales. Powder Technol. 329, 288–303 (2018). https://doi.org/10.1016/j.powtec.2018.01.082

    Article  Google Scholar 

  52. Kodam, M., Bharadwaj, R., Curtis, J., Hancock, B., Wassgren, C.: Cylindrical object contact detection for use in discrete element method simulations, part II—experimental validation. Chem. Eng. Sci. 65, 5863–5871 (2010). https://doi.org/10.1016/j.ces.2010.08.007

    Article  Google Scholar 

  53. Ge, L., Gui, N., Yang, X., Tu, J., Jiang, S.: Effects of aspect ratio and component ratio on binary-mixed discharging pebble flow in hoppers. Powder Technol. 355, 320–332 (2019). https://doi.org/10.1016/j.powtec.2019. 07.045

    Article  Google Scholar 

  54. Govender, N., Wilke, D.N., Pizette, P., Abriak, N.-E.: A study of shape non-uniformity and poly-dispersity in hopper discharge of spherical and polyhedral particle systems using the Blaze-DEM GPU code. Appl. Math. Comput. 319, 318–336 (2018). https://doi.org/10.1016/j.amc.2017.03.037

    Article  MATH  Google Scholar 

  55. Langston, P.A., Al-Awamleh, M.A., Fraige, F.Y., Asmar, B.N.: Distinct element modelling of non-spherical frictionless particle flow. Chem. Eng. Sci. 59(2), 425–435 (2004). https://doi.org/10.1016/j.ces.2003. 10.008

    Article  Google Scholar 

  56. Hidalgo, R.C., Zuriguel, I., Maza, D., Pagonabarraga, I.: Granular packings of elongated faceted particles deposited under gravity. J. Stat. Mech. Theory Exp. 2010(06), P06025 (2010). https://doi.org/10.1088/1742-5468/2010/06/p06025

    Article  MATH  Google Scholar 

  57. Zhang, Y., Jia, F., Zeng, Y., Han, Y., Xiao, Y.: DEM study in the critical height of flow mechanism transition in a conical silo. Powder Technol. 331, 98–106 (2018). https://doi.org/10.1016/j.powtec.2018.03.024

    Article  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0605902, 2016YFC1401505 and 2016YFC1402706), the National Natural Science Foundation of China (Grant Nos. 11872136 and 11772085) and the Fundamental Research Funds for the Central Universities (Grant Nos. DUT19GJ206 and DUT19ZD207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunying Ji.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: Flow regimes and phase transitions in granular matter: multiscale modeling from micromechanics to continuum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yan, Y. & Ji, S. Transition of granular flow patterns in a conical hopper based on superquadric DEM simulations. Granular Matter 22, 79 (2020). https://doi.org/10.1007/s10035-020-01051-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01051-9

Keywords

Navigation