Skip to main content

Advertisement

Log in

Fibronectin is essential for formation of fenestrae in endothelial cells of the fenestrated capillary

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Endothelial fenestrae are transcellular pores that pierce the capillary walls in endocrine glands such as the pituitary. The fenestrae are covered with a thin fibrous diaphragm consisting of the plasmalemma vesicle–associated protein (PLVAP) that clusters to form sieve plates. The basal surface of the vascular wall is lined by basement membrane (BM) composed of various extracellular matrices (ECMs). However, the relationship between the ECMs and the endothelial fenestrae is still unknown. In this study, we isolated fenestrated endothelial cells from the anterior lobe of the rat pituitary, using a dynabeads-labeled antibody against platelet endothelial cell adhesion molecule 1 (PECAM1). We then analyzed the gene expression levels of several endothelial marker genes and genes for integrin α subunits, which function as the receptors for ECMs, by real-time polymerase chain reaction (PCR). The results showed that the genes for the integrin α subunit, which binds to collagen IV, fibronectin, laminin-411, or laminin-511, were highly expressed. When the PECAM1-positive cells were cultured for 7 days on collagen IV-, fibronectin-, laminins-411-, or laminins-511-coated coverslips, the sieve plate structures equipped with probably functional fenestrae were maintained only when the cells were cultured on fibronectin. Additionally, real-time PCR analysis showed that the fibronectin coating was effective in maintaining the expression pattern of several endothelial marker genes that were preferentially expressed in the endothelial cells of the fenestrated capillaries. These results indicate that fibronectin functions as the principal factor in the maintenance of the sieve plate structures in the endothelial cells of the fenestrated capillary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AL:

Anterior lobe

BM:

Basement membrane

BSA:

Bovine serum albumin

DAPI:

4′, 6-Diamidino-2-phenylindole

ECM:

Extracellular matrix

ECMs:

Extracellular matrices

GP:

Guinea pig

HBT:

0.1% Triton X-100/HEPES buffer

IgG:

Immunoglobulin G

KDR:

Kinase insert domain receptor

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

PECAM1:

Platelet endothelial cell adhesion molecule 1

PFA:

Paraformaldehyde

PLVAP:

Plasmalemma vesicle–associated protein

PNGase F:

Peptide-N-glycosidase F

RT:

Room temperature

SEM:

Scanning electron microscopy

siRNA:

Small interfering RNA

TBST:

Tris-buffered saline containing 0.1% Tween 20

VEGF-A:

Vascular endothelial growth factor-A

References

  • Astrof S, Hynes RO (2009) Fibronectins in vascular morphogenesis. Angiogenesis 12:165–175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339:269–280

    CAS  PubMed  Google Scholar 

  • Bearer EL, Orci L (1985) Endothelial fenestral diaphragms: a quick-freeze, deep-etch study. J Cell Biol 100:418–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1–1

    PubMed  PubMed Central  Google Scholar 

  • Carley WW, Milici AJ, Madri JA (1988) Extracellular matrix specificity for the differentiation of capillary endothelial cells. Exp Cell Res 178:426–434

    CAS  PubMed  Google Scholar 

  • Carpenter B, Lin Y, Stoll S, Raffai RL, McCuskey R, Wang R (2005) VEGF is crucial for the hepatic vascular development required for lipoprotein uptake. Development 132:3293–3303

    CAS  PubMed  Google Scholar 

  • Chaturvedi K, Sarkar DK (2006) Isolation and characterization of rat pituitary endothelial cells. Neuroendocrinology 83:387–393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciofi P, Garret M, Lapirot O, Lafon P, Loyens A, Prevot V, Levine JE (2009) Brain-endocrine interactions: a microvascular route in the mediobasal hypothalamus. Endocrinology 150:5509–5519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clementi F, Palade GE (1969) Intestinal capillaries : I. Permeability to peroxidase and ferritin. J Cell Biol 41:33–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeLeve LD, Wang X, McCuskey MK, McCuskey RS (2006) Rat liver endothelial cells isolated by anti-CD31 immunomagnetic separation lack fenestrae and sieve plates. Am J Physiol Gastrointest Liver Physiol 291:G1187–G1189

    CAS  PubMed  Google Scholar 

  • Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N, Gerber H-P, Kikkawa Y, Miner JH, Quaggin SE (2003) Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111:707–716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson A, Cao R, Roy J, Tritsaris K, Wahlestedt C, Dissing S, Thyberg J, Cao Y (2003) Small GTP-binding protein Rac is an essential mediator of vascular endothelial growth factor-induced endothelial fenestrations and vascular permeability. Circulation 107:1532–1538

    CAS  PubMed  Google Scholar 

  • Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W (1998) Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 140:947–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farquhar MG (1961) Fine structure and function in capillaries of the anterior pituitary gland. Angiology 12:270–292

    CAS  PubMed  Google Scholar 

  • George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091

    CAS  PubMed  Google Scholar 

  • Gordon L, Blechman J, Shimoni E, Gur D, Anand-Apte B, Levkowitz G (2019) The fenestrae-associated protein Plvap regulates the rate of blood-borne protein passage into the hypophysis. Development 146:dev177790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrnberger L, Seitz R, Kuespert S, Bösl MR, Fuchshofer R, Tamm ER (2012) Lack of endothelial diaphragms in fenestrae and caveolae of mutant Plvap-deficient mice. Histochem Cell Biol 138:709–724

    CAS  PubMed  Google Scholar 

  • Horiguchi K, Nakakura T, Yoshida S, Tsukada T, Kanno N, Hasegawa R, Takigami S, Ohsako S, Kato T, Kato Y (2016) Identification of THY1 as a novel thyrotrope marker and THY1 antibody-mediated thyrotrope isolation in the rat anterior pituitary gland. Biochem Biophys Res Commun 480:273–279

    CAS  PubMed  Google Scholar 

  • Ioannidou S, Deinhardt K, Miotla J, Bradley J, Cheung E, Samuelsson S, Ng Y-S, Shima DT (2006) An in vitro assay reveals a role for the diaphragm protein PV-1 in endothelial fenestra morphogenesis. Proc Natl Acad Sci U S A 103:16770–16775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamba T, Tam BYY, Hashizume H, Haskell A, Sennino B, Mancuso MR, Norberg SM, O'Brien SM, Davis RB, Gowen LC, Anderson KD, Thurston G, Joho S, Springer ML, Kuo CJ, McDonald DM (2006) VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 290:H560–H576

    CAS  PubMed  Google Scholar 

  • Lammert E, Gu G, McLaughlin M, Brown D, Brekken R, Murtaugh LC, Gerber HP, Ferrara N, Melton DA (2003) Role of VEGF-A in vascularization of pancreatic islets. Curr Biol 13:1070–1074

    CAS  PubMed  Google Scholar 

  • Marchand M, Monnot C, Muller L, Germain S (2019) Extracellular matrix scaffolding in angiogenesis and capillary homeostasis. Semin Cell Dev Biol 89:147–156

    CAS  PubMed  Google Scholar 

  • McGuire RF, Bissell DM, Boyles J, Roll FJ (1992) Role of extracellular matrix in regulating fenestrations of sinusoidal endothelial cells isolated from normal rat liver. Hepatology 15:989–997

    CAS  PubMed  Google Scholar 

  • Milici AJ, Furie MB, Carley WW (1985) The formation of fenestrations and channels by capillary endothelium in vitro. Proc Natl Acad Sci U S A 82:6181–6185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mochida H, Nakakura T, Suzuki M, Hayashi H, Kikuyama S, Tanaka S (2008) Immunolocalization of a mammalian aquaporin 3 homolog in water-transporting epithelial cells in several organs of the clawed toad Xenopus laevis. Cell Tissue Res 333:297–309

    CAS  PubMed  Google Scholar 

  • Morgan MR, Humphries MJ, Bass MD (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8:957–969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami T, Kikuta A, Taguchi T, Ohtsuka A, Ohtani O (1987) Blood vascular architecture of the rat cerebral hypophysis and hypothalamus. A dissection/scanning electron microscopy of vascular casts. Arch Histol Jpn 50:133–176

    CAS  PubMed  Google Scholar 

  • Nakakura T, Yoshida M, Dohra H, Suzuki M, Tanaka S (2006) Gene expression of vascular endothelial growth factor-A in the pituitary during formation of the vascular system in the hypothalamic-pituitary axis of the rat. Cell Tissue Res 324:87–95

    CAS  PubMed  Google Scholar 

  • Nakakura T, Asano-Hoshino A, Suzuki T, Arisawa K, Tanaka H, Sekino Y, Kiuchi Y, Kawai K, Hagiwara H (2015) The elongation of primary cilia via the acetylation of α-tubulin by the treatment with lithium chloride in human fibroblast KD cells. Med Mol Morphol 48:44–53

    CAS  PubMed  Google Scholar 

  • Nakakura T, Suzuki T, Nemoto T, Tanaka H, Asano-Hoshino A, Arisawa K, Nishijima Y, Kiuchi Y, Hagiwara H (2016) Intracellular localization of α-tubulin acetyltransferase ATAT1 in rat ciliated cells. Med Mol Morphol 49:133–143

    CAS  PubMed  Google Scholar 

  • Nakakura T, Suzuki T, Horiguchi K, Fujiwara K, Tsukada T, Asano-Hoshino A, Tanaka H, Arisawa K, Nishijima Y, Nekooki-Machida Y, Kiuchi Y, Hagiwara H (2017a) Expression and localization of forkhead box protein FOXJ1 in S100β-positive multiciliated cells of the rat pituitary. Med Mol Morphol 50:59–67

    CAS  PubMed  Google Scholar 

  • Nakakura T, Suzuki T, Torii S, Asano-Hoshino A, Nekooki-Machida Y, Tanaka H, Arisawa K, Nishijima Y, Susa T, Okazaki T, Kiuchi Y, Hagiwara H (2017b) ATAT1 is essential for regulation of homeostasis-retaining cellular responses in corticotrophs along hypothalamic-pituitary-adrenal axis. Cell Tissue Res 370:169–178

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Yamaguchi H, Asashima T, Terasaki T (2007) Establishing a method to isolate rat brain capillary endothelial cells by magnetic cell sorting and dominant mRNA expression of multidrug resistance-associated protein 1 and 4 in highly purified rat brain capillary endothelial cells. Pharm Res 24:688–694

    CAS  PubMed  Google Scholar 

  • Rhodin JA (1962) The diaphragm of capillary endothelial fenestrations. J Ultrastruct Res 6:171–185

    CAS  PubMed  Google Scholar 

  • Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 108:2369–2379

    CAS  PubMed  Google Scholar 

  • Shibata Y, Katayama I, Nakakura T, Ogushi Y, Okada R, Tanaka S, Suzuki M (2015) Molecular and cellular characterization of urinary bladder-type aquaporin in Xenopus laevis. Gen Comp Endocrinol 222:11–19

    CAS  PubMed  Google Scholar 

  • Simionescu M, Simionescu N, Palade GE (1974) Morphometric data on the endothelium of blood capillaries. J Cell Biol 60:128–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stan RV, Ghitescu L, Jacobson BS, Palade GE (1999a) Isolation, cloning, and localization of rat PV-1, a novel endothelial caveolar protein. J Cell Biol 145:1189–1198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stan RV, Kubitza M, Palade GE (1999b) PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc Natl Acad Sci U S A 96:13203–13207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stan RV, Tse D, Deharvengt SJ, Smits NC, Xu Y, Luciano MR, McGarry CL, Buitendijk M, Nemani KV, Elgueta R, Kobayashi T, Shipman SL, Moodie KL, Daghlian CP, Ernst PA, Lee HK, Suriawinata AA, Schned AR, Longnecker DS, Fiering SN, Noelle RJ, Gimi B, Shworak NW, Carriere C (2012) The diaphragms of fenestrated endothelia: gatekeepers of vascular permeability and blood composition. Dev Cell 23:1203–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Nakakura T, Jansen EJR, Unno K, Okada R, Suzuki M, Martens GJM, Kikuyama S (2013) Angiogenesis in the intermediate lobe of the pituitary gland alters its structure and function. Gen Comp Endocrinol 185:10–18

    CAS  PubMed  Google Scholar 

  • Tomi M, Hosoya KI (2004) Application of magnetically isolated rat retinal vascular endothelial cells for the determination of transporter gene expression levels at the inner blood–retinal barrier. J Neurochem 91:1244–1248

    CAS  PubMed  Google Scholar 

  • van der Flier A, Badu-Nkansah K, Whittaker CA, Crowley D, Bronson RT, Lacy-Hulbert A, Hynes RO (2010) Endothelial α5 and αv integrins cooperate in remodeling of the vasculature during development. Development 137:2439–2449

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Editage (www.editage.com) for English language editing.

Funding

This work was supported in part by the JSPS KAKENHI (C) Grant Number JP19K07257, a research grant from the Takeda Science Foundation, Hokuto Foundation for Bioscience, and Teikyo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nakakura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This study was approved by the Laboratory Animal Ethics Committee established at Teikyo University (Tokyo, Japan) and conducted according to its guidelines. The document ID of the approval is 17-008. This article does not contain any studies with human participants.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Supplemental Fig. 1

Immunofluorescence images showing PLVAP localization in PECAM1-positive cells cultured on iMatrix-411 and iMatrix-511, which are the product names of laminin coating agent. Signals of PLVAP (a-d, green) and F-actin (a’-d’, red) in PECAM1-positive cells cultured for 3 days (a-a”’, c-c”’) and 7 days (b-b”’, d-d”’) on iMatrix-411-coated (a-a”’, b-b”’) or iMatrix-511-coated (c-c”’, d-d”’) cover slips were observed. Nuclei were counterstained with DAPI (blue). Panels a”'-d”' show the enlarged photographs of the regions surrounded by a white line in the panels a”-d”. Bars: 10 μm (a-d, a’-d’, a”-d”), 5 μm (a”’-d”’). (PNG 1758 kb)

High Resulotion Image (TIF 2376 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakakura, T., Suzuki, T., Tanaka, H. et al. Fibronectin is essential for formation of fenestrae in endothelial cells of the fenestrated capillary. Cell Tissue Res 383, 823–833 (2021). https://doi.org/10.1007/s00441-020-03273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03273-y

Keywords

Navigation