Skip to main content
Log in

Expression of RUNX2 and Osterix in Rat Mesenchymal Stem Cells during Culturing in Osteogenic-Conditioned Medium

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the expression of transcription factors RUNX2 and Osterix after addition of a concentrate of osteogenic-conditioned medium to the culture medium for osteogenic differentiation of mesenchymal stem cells (MSC). The obtained concentrate of osteogenic-conditioned medium containing a complex of bioactive substances with a molecular weight >10 kDa provided MSC differentiation into osteoblasts, which was confirmed by high level of expression of transcription factors RUNX2 and Osterix in comparison with the negative control. The highest expression of transcription factor Osterix was revealed on day 14 of MSC culturing in the presence of osteogenic supplement StemPro (positive control) and the studied concentrate of osteogenic-conditioned medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bao X, Li Z, Liu H, Feng K, Yin F, Li H, Qin J. Stimulation of chondrocytes and chondroinduced mesenchymal stem cells by osteoinduced mesenchymal stem cells under a fluid flow stimulus on an integrated microfluidic device. Mol. Med. Rep. 2018;17(2):2277-2288.

    CAS  PubMed  Google Scholar 

  2. Donzelli E, Salvadè A, Mimo P, Viganò M, Morrone M, Papagna R, Carini F, Zaopo A, Miloso M, Baldoni M, Tredici G. Mesenchymal stem cells cultured on a collagen scaffold: In vitro osteogenic differentiation. Arch. Oral. Biol. 2007;52(1):64-73.

    CAS  PubMed  Google Scholar 

  3. Fitzpatrick EB, Dehart MJ, Brown TA, Salgar SK. Mesenchymal stem cell therapy to promote limb transplant functional recovery. Microsurgery. 2016;37(3):222-234.

    PubMed  Google Scholar 

  4. He G, Chen J, Huang D. miR-877-3p promotes TGF-β1-induced osteoblast differentiation of MC3T3-E1 cells by targeting Smad7. Exp. Ther. Med. 2019;18(1):312-319.

    CAS  Google Scholar 

  5. Kanatani N, Fujita T, Fukuyama R, Liu W, Yoshida CA, Moriishi T, Yamana K, Miyazaki T, Toyosawa S, Komori T. Cbf beta regulates Runx2 function isoform-dependently in postnatal bone development. Dev. Biol. 2006;296(1):48-61.

    CAS  PubMed  Google Scholar 

  6. Khaled EG, Saleh M, Hindocha S, Griffin M, Khan WS. Tissue engineering for bone production- stem cells, gene therapy and scaffolds. Open Orthop. J. 2011;5(Suppl. 2):289-295.

    PubMed  PubMed Central  Google Scholar 

  7. Komori T. Regulation of osteoblast differentiation by transcription factors. J. Cell. Biochem. 2006;99(5):1233-1239.

    CAS  PubMed  Google Scholar 

  8. Mussano F, Genova T, Petrillo S, Roato I, Ferracini R, Munaron L. Osteogenic differentiation modulates the cytokine, chemokine, and growth factor profile of ASCs and SHED. Int. J. Med. Sci. 2018;19(5). pii: E1454. doi: https://doi.org/10.3390/ijms19051454

  9. Park HC, Son YB, Lee SL, Rho GJ, Kang YH, Park BW, Byun SH, Hwang SC, Cho IA, Cho YC, Sung IY, Woo DK, Byun JH. Effects of osteogenic-conditioned medium from human periosteum-derived cells on osteoclast differentiation. Int. J. Med. Sci. 2017;14(13):1389-1401.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Park YJ, Koh J, Gauna AE, Chen S, Cha S. Identification of regulatory factors for mesenchymal stem cell-derived salivary epithelial cells in a co-culture system. PLoS One. 2014;9(11). e112158. doi: https://doi.org/10.1371/journal.pone.0112158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143-147.

    CAS  PubMed  Google Scholar 

  12. Pittenger MF, Mbalaviele G. Black M, Mosca JD, Marshak DR. Mesenchymal stem cells. Human cell culture. Vol. V. Primary Mesenchymal Cells. Koller MR, Palsson BO. eds. Kluwer Academic Publishers. 2001. P. 189-207.

  13. Scuteri A, Donzelli E, Foudah D, Caldara C, Redondo J, D’Amico G, Tredici G, Miloso M. Mesengenic differentiation: comparison of human and rat bone marrow mesenchymal stem cells. Int. J. Stem Cells. 2014;7(2):127-134.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sobacchi C, Palagano E, Villa A, Menale C. Soluble factors on stage to direct mesenchymal stem cells fate. Front. Bioeng. Biotechnol. 2017;5. ID 32. doi: https://doi.org/10.3389/fbioe.2017.00032

  15. Vanden Berg-Foels WS. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment. Tissue Eng. Part B. Rev. 2014;20(1):28-39.

    Google Scholar 

  16. Wang R, Liu W, Du M, Yang C, Li X, Yang P. The differential effect of basic fibroblast growth factor and stromal cell-derived factor-1 pretreatment on bone morrow mesenchymal stem cells osteogenic differentiation potency. Mol. Med. Rep. 2018;17(3):3715-3721.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Nadezhdin.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 2, pp. 112-117, June, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokrovskaya, L.A., Nadezhdin, S.V., Zubareva, E.V. et al. Expression of RUNX2 and Osterix in Rat Mesenchymal Stem Cells during Culturing in Osteogenic-Conditioned Medium. Bull Exp Biol Med 169, 571–575 (2020). https://doi.org/10.1007/s10517-020-04931-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-04931-5

Key Words

Navigation