Skip to main content

Advertisement

Log in

Methodological Approaches to Assessing the Size and Morphology of Microvesicles of Cell Lines

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Morphological properties and the size of microvesicles were assessed using atomic force microscopy, electron microscopy, and granulometric analysis. As these methods require significant numbers of microvesicles, we chose microvesicles derived from cell lines for our research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS. Endothelium-derived microparticles impair endothelial function in vitro. Am. J. Physiol. Heart Circ. Physiol. 2004;286(5):H1910-H1915.

    CAS  PubMed  Google Scholar 

  2. Budaj M, Poljak Z, Ďuriš I, Kaško M, Imrich R, Kopáni M, Maruščáková L, Hulín I. Microparticles: a component of various diseases. Pol. Arch. Med. Wewn. 2012;122(Suppl 1):24-29.

    CAS  PubMed  Google Scholar 

  3. Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz R.M. Microparticles: biomarkers and beyond. Clin. Sci. (Lond). 2013;124(7):423-441.

    CAS  PubMed  Google Scholar 

  4. Burger D, Touyz RM. Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. J. Am. Soc. Hypertens. 2012;6(2):85-99.

    CAS  PubMed  Google Scholar 

  5. Campello E, Radu CM, Duner E, Lombardi AM, Spiezia L, Bendo R, Ferrari S, Simioni P, Fabris F. Activated platelet-derived and leukocyte-derived circulating microparticles and the risk of thrombosis in heparin-induced thrombocytopenia: a role for PF4-bearing microparticles?. Cytometry B Clin. Cytom. 2018;94(2):334-341.

    CAS  PubMed  Google Scholar 

  6. De Luca L, D’Arena G, Simeon V, Trino S, Laurenzana I, Caivano A, La Rocca F, Villani O, Mansueto G, Deaglio S, Innocenti I, Laurenti L, Molica S, Pietrantuono G, De Stradis A, Del Vecchio L, Musto P. Characterization and prognostic relevance of circulating microvesicles in chronic lymphocytic leukemia. Leuk. Lymphoma. 2017;58(6):1424-1432.

    PubMed  Google Scholar 

  7. Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler. Thromb. Vasc. Biol. 2011;31(1):27-33.

    CAS  PubMed  Google Scholar 

  8. Distler JH, Huber LC, Gay S, Distler O, Pisetsky DS. Microparticles as mediators of cellular cross-talk in inflammatory disease. Autoimmunity. 2006;39(8):683-690.

    CAS  PubMed  Google Scholar 

  9. Dragovic RA, Collett GP, Hole P, Ferguson DJ, Redman CW, Sargent IL, Tannetta DS. Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence Nanoparticle Tracking Analysis. Methods. 2015;87:64-74.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Evans-Osses I, Reichembach LH, Ramirez MI. Exosomes or microvesicles? Two kinds of extracellular vesicles with different routes to modify protozoan-host cell interaction. Parasitol. Res. 2015;114(10):3567-3575.

    PubMed  Google Scholar 

  11. Gasser O, Hess C, Miot S, Deon C, Sanchez JC, Schifferli JA. Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp. Cell Res. 2003;285(2):243-257.

    CAS  PubMed  Google Scholar 

  12. Germain SJ, Sacks GP, Sooranna SR, Sargent IL, Redman CW. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. J. Immunol. 2007;178(9):5949-5956.

    CAS  PubMed  Google Scholar 

  13. György B, Módos K, Pállinger E, Pálóczi K, Pásztói M, Misják P, Deli MA, Sipos A, Szalai A, Voszka I, Polgár A, Tóth K, Csete M, Nagy G, Gay S, Falus A, Kittel A, Buzás EI. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood. 2011;117(4):e39-e48.

    PubMed  Google Scholar 

  14. Issman L, Brenner B, Talmon Y, Aharon A. Cryogenic transmission electron microscopy nanostructural study of shed microparticles. PLoS One. 2013;8(12). ID e83680. doi: https://doi.org/10.1371/journal.pone.0083680

  15. Jingting C, Yangde Z, Yi Z, Huining L, Rong Y, Yu Z. Heparanase expression correlates with metastatic capability in human choriocarcinoma. Gynecol. Oncol. 2007;107(1):22-29.

    PubMed  Google Scholar 

  16. Komatsu F, Kajiwara M. Relation of natural killer cell line NK-92-mediated cytolysis (NK-92-lysis) with the surface markers of major histocompatibility complex class I antigens, adhesion molecules, and Fas of target cells. Oncol. Res. 1998;10(10):483-489.

    CAS  PubMed  Google Scholar 

  17. Korenevskii AV, Milyutina YP, Zhdanova AA, Pyatygina KM, Sokolov DI, Sel’kov SA. Mass-spectrometric analysis of proteome of microvesicles produced by NK-92 natural killer cells. Bull. Exp. Biol. Med. 2018;165(4):564-571.

    CAS  PubMed  Google Scholar 

  18. Mack M. Leukocyte-derived microvesicles dock on glomerular endothelial cells: stardust in the kidney. Kidney Int. 2017;91(1):13-15.

    CAS  PubMed  Google Scholar 

  19. Mack M, Kleinschmidt A, Brühl H, Klier C, Nelson PJ, Cihak J, Plachý J, Stangassinger M, Erfle V, Schlöndorff D. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat. Med. 2000;6(7):769-775.

    CAS  PubMed  Google Scholar 

  20. Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ. Res. 2010;107(9):1047-1057.

    CAS  PubMed  Google Scholar 

  21. Mikhailova VA, Ovchinnikova OM, Zainulina MS, Sokolov DI, Sel’kov SA. Detection of microparticles of leukocytic origin in the peripheral blood in normal pregnancy and preeclampsia. Bull. Exp. Biol. Med. 2014;157(6):751-756.

    CAS  PubMed  Google Scholar 

  22. Sedgwick AE, D’Souza-Schorey C. The biology of extracellular microvesicles. Traffic. 2018;19(5):319-327.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Simak J, Gelderman MP, Yu H, Wright V, Baird AE. Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome. J. Thromb. Haemost. 2006;4(6):1296-1302.

    CAS  PubMed  Google Scholar 

  24. Sokolov DI, Ovchinnikova OM, Korenkov DA, Viknyanschuk AN, Benken KA, Onokhin KV, Selkov SA. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes. Transl. Res. 2016;170:112-123.

    CAS  PubMed  Google Scholar 

  25. Todorova D, Simoncini S, Lacroix R, Sabatier F, Dignat-George F. Extracellular vesicles in angiogenesis. Circ. Res. 2017;120(10):1658-1673.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Vajen T, Mause SF, Koenen RR. Microvesicles from platelets: novel drivers of vascular inflammation. Thromb. Haemost. 2015;114(2):228-236.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 2012;64(3):676-705.

    PubMed  Google Scholar 

  28. van der Pol E, Coumans F, Varga Z, Krumrey M, Nieuwland R. Innovation in detection of microparticles and exosomes. J. Thromb. Haemost. 2013;11(Suppl. 1):36-45.

    PubMed  Google Scholar 

  29. van der Pol E, Coumans FA, Grootemaat AE, Gardiner C, Sargent IL, Harrison P, Sturk A, van Leeuwen TG, Nieuwland R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost. 2014;12(7):1182-1192.

    PubMed  Google Scholar 

  30. Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ. Extracellular vesicle isolation and characterization: toward clinical application. J. Clin. Invest. 2016;126(4):1152-1162.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Markova.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 2, pp. 129-138, June, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markova, K.L., Kozyreva, A.R., Gorshkova, A.A. et al. Methodological Approaches to Assessing the Size and Morphology of Microvesicles of Cell Lines. Bull Exp Biol Med 169, 586–595 (2020). https://doi.org/10.1007/s10517-020-04934-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-04934-2

Key Words

Navigation