Skip to main content
Log in

Exploring the Origin of Multiwavelength Emission from High-Redshift Blazar B3 1343 + 451

  • Published:
Astrophysics Aims and scope

A Correction to this article was published on 01 December 2022

This article has been updated

B3 1343 + 451 is a distant ( z = 2.534 ) and bright flat-spectrum radio quasar observed in the γ -ray band. The results from the multiwavelength observations of B3 1343 + 451 with Fermi-LAT and Swift are reported. In the γ -ray band, strong flares were observed on 05 December 2011 and on 13 December 2009 when the flux increased up to (8.78 ± 0.83)·10-7 photon cm-2 s-1. The hardest photon index Γ = 1.73 ± 0.24 has been observed on MJD 58089 which is not common for flat-spectrum radio quasars. The analysis of Swift XRT data shows that in 2014 the X-ray flux of the source increased ~2 times as compared to 2009, but in both periods the X-ray emission is characterized by a hard photon index of ΓX-ray = 1.2–1.3. During the γ -ray flares, the shortest flux halving timescale was ~2.34 days, implying the emission had been produced in a very compact region, R ≤ δ ct /(1 + z) = 3.43·1016 cm (when δ = 20 ). The spectral energy distribution of B3 1343 + 451 is modeled during the quiescent and flaring periods assuming a compact emitting region outside the BLR. It is found that the flares can be explained by only changing the bulk Lorentz factor of the emitting region without significant modification of the emitting electron parameters and luminosity of the jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

References

  1. C. M. Urry, P. Padovani, Publ. Astron. Soc. Pacif., 107, 803, 1995.

    Article  ADS  Google Scholar 

  2. G. Ghisellini, Radiative Processes in High Energy Astrophysics (Berlin: Springer), 2013.

    Book  Google Scholar 

  3. L. Maraschi, G. Ghisellini, and A. Celotti, Astrophys. J., 397, L5, 1992.

    Article  ADS  Google Scholar 

  4. S. Bloom and A. Marscher, Astrophys. J., 461, 657, 1996.

    Article  ADS  Google Scholar 

  5. G. Ghisellini, L. Maraschi, and A. Treves, Astron. Astrophys., 146, 204, 1985.

    ADS  Google Scholar 

  6. M. Sikora, M. Begelman, and M. Rees, Astrophys. J., 421, 153, 1994.

    Article  ADS  Google Scholar 

  7. M. B3azejowski, M. Sikora, R. Moderski et al., Astrophys. J., 545, 107, 2000.

  8. A. Mucke and R. Protheroe, Astroparticle Physics, 15, 121, 2001.

    Article  ADS  Google Scholar 

  9. K. Mannheim, Astron. Astrophys., 269, 67, 1993.

    ADS  Google Scholar 

  10. A. Mucke, R. Protheroe, R. Engel et al., Astroparticle Physics, 18, 593, 2003.

    Article  ADS  Google Scholar 

  11. M. Aartsen, M. Ackermann, and J. Adams, Science, 361, 147, 2018.

    Article  ADS  Google Scholar 

  12. P. Padovani, P. Giommi, E. Resconi et al., Mon. Not. Roy. Astron. Soc., 480, 192, 2018.

    Google Scholar 

  13. S. Ansoldi, L. A. Antonelli, C. Arcaro et al., Astrophys. J., 863, L10, 2018.

    Article  ADS  Google Scholar 

  14. M. Cerruti, A. Zech, C. Boisson et al., Mon. Not. Roy. Astron. Soc., 483, L12, 2019.

    Google Scholar 

  15. N. Sahakyan, Astrophys. J., 866, 109, 2018.

    Article  ADS  Google Scholar 

  16. N. Sahakyan, Astron. Astrophys., 622, A144, 2019.

    Article  ADS  Google Scholar 

  17. A. Brown, Mon. Not. Roy. Astron. Soc., 431, 824, 2013.

    Article  ADS  Google Scholar 

  18. M. Ackermann, R. Anantua, K. Asano et al., Astrophys. J. Lett., 824, L20, 2016.

    Article  ADS  Google Scholar 

  19. V. Baghmanyan, S. Gasparyan, and N. Sahakyan, Astrophys. J., 848, 111, 2017.

    Article  ADS  Google Scholar 

  20. N. Sahakyan, V. Baghmanyan, and D. Zargaryan, Astron. Astrophys., 614, A6, 2018.

    Article  ADS  Google Scholar 

  21. R. Buehler, The Astronomer's Telegram, No. 2217, 2009.

  22. O. Roopesh, M. Dutka, and E. Torresi, The Astronomer's Telegram, No. 3793, 2011.

  23. W. B. Atwood, A. A. Abdo, M. Ackermann et al., Astrophys. J., 697, 1071, 2009.

    Article  ADS  Google Scholar 

  24. Fermi-LAT collaboration, arXiv e-prints, arXiv:1902. 10045, 2019.

  25. E. Massaro, M. Perri, P. Giommi et al., Astron. Astrophys., 413, 489, 2004.

    Article  ADS  Google Scholar 

  26. A. Abdo, M. Ackermann, M. Ajello et al., Astrophys. J., 710, 810, 2010.

    Article  ADS  Google Scholar 

  27. A. Abdo, M. Ackermann, M. Ajello et al., Astrophys. J., 721, 1425, 2010.

    Article  ADS  Google Scholar 

  28. S. Gasparyan, N. Sahakyan, V. Baghmanyan et al., Astrophys. J., 863, 114, 2018.

    Article  ADS  Google Scholar 

  29. J. G. Kirk, F. Riege, and A. Mastichiadis, Astron. Astrophys., 333, 452, 1998.

    ADS  Google Scholar 

  30. A. Abdo, M. Ackermann, M. Ajello et al., Astrophys. J., 699, 31, 2009.

    Article  ADS  Google Scholar 

  31. W. Cash, Astrophys. J., 228, 939, 1979.

    Article  ADS  Google Scholar 

  32. T. Poole, A. Breeveld, M. Page et al., Mon. Not. Roy. Astron. Soc., 383, 627, 2008.

    Google Scholar 

  33. N. Sahakyan, D. Zargaryan, and V. Baghmanyan, Astron. Astrophys., 574, A88, 2015.

    Article  ADS  Google Scholar 

  34. D. Zargaryan, S. Gasparyan, V. Baghmanyan et al., Astron. Astrophys., 608, A37, 2017.

    Article  Google Scholar 

  35. A. Abdo, M. Ackermann, M. Ajello et al., Astrophys. J., 719, 1433, 2010.

    Article  ADS  Google Scholar 

  36. N. Sahakyan and S. Gasparyan, Mon. Not. Roy. Astron. Soc., 470, 2861, 2017.

    Article  ADS  Google Scholar 

  37. G. Ghisellini and F. Tavecchio, Mon. Not. Roy. Astron. Soc., 448, 1060, 2015.

    Article  ADS  Google Scholar 

  38. E. Summerlin and M. Baring, Astrophys. J., 745, 63, 2012.

    Article  ADS  Google Scholar 

  39. D. Ellison, F. Jones, and S. Reynolds, Astrophys. J., 360, 702, 1990.

    Article  ADS  Google Scholar 

  40. G. Ghisellini, L. Maraschi, and F. Tavecchio, Mon. Not. Roy. Astron. Soc., 396, L105, 2009.

    Article  ADS  Google Scholar 

  41. E. Massaro, A. Tramacere, M. Perri et al., Astron. Astrophys., 448, 861, 2006.

    Article  ADS  Google Scholar 

  42. A. Tramacere, P. Giommi, M. Perri et al., Astron. Astrophys., 501, 879, 2009.

    Article  ADS  Google Scholar 

  43. A. Tramacere, E. Massaro, and A. Taylor, Astrophys. J., 739, 66, 2011.

    Article  ADS  Google Scholar 

  44. A. Paggi, A. Cavaliere, V. Vittorini et al., Astrophys. J., 736, 128, 2011.

    Article  ADS  Google Scholar 

  45. L. Pacciani, F. Tavecchio, I. Donnarumma et al., Astrophys. J., 790, 45, 2014.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sahakyan.

Additional information

Published in Astrofizika, Vol. 63, No. 3, pp. 375-390 (August 2020).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahakyan, N., Harutyunyan, G., Israelyan, D. et al. Exploring the Origin of Multiwavelength Emission from High-Redshift Blazar B3 1343 + 451. Astrophysics 63, 334–348 (2020). https://doi.org/10.1007/s10511-020-09638-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-020-09638-z

Keywords

Navigation