Skip to main content
Log in

Dynamics of passively mode-locked lasers with saturable absorber and saturable nonlinearity

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The dynamics of a model of passively mode-locked laser with saturable absorber, the optical amplifier of which possesses a saturable nonlinearity, is considered with interest in both continuous wave and pulse regimes of operation. The study rests on the laser self-starting picture which assumes that the laser should operate instantly in the pulse regime, when continuous waves become unstable in the system. Within the framework of the modulational-instability analysis, a global map for the laser self-starting conditions is constructed in terms of a two-dimensional complex parameter space, mapped by the real and imaginary parts of the modulation gain over a broad range of values of the modulation frequency. The map suggests that the saturable nonlinearity lowers the threshold value of the input intensity required for laser self-starting, analytical expression for this threshold input field is derived in the particular case of a zero modulation frequency. Treating the system dynamics in the full nonlinear regime using numerical simulations, time series of the laser amplitude and instantaneous phase, as well as of the gain, are obtained and their changes with the variation of the homogeneous gain are examined. It is found that a relatively small value of the equilibrium gain will favor gain decrease, and pulse generation and buildup into either simple-periodic or multi-periodic pulse trains, depending on the magnitude of the saturable nonlinearity coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.A. Haus, J. Appl. Phys. 46, 3049 (1975)

    ADS  Google Scholar 

  2. H.A. Haus, Y. Silberberg, IEEE J. Quantum Electron. 22, 325 (1986)

    ADS  Google Scholar 

  3. E.P. Ippen, H.A. Haus, L.Y. Liu, J. Opt. Soc. Am. B 6, 1736 (1989)

    ADS  Google Scholar 

  4. J. Zou, C. Dong, H. Wang et al., Light Sci. Appl. 9, 61 (2020)

    ADS  Google Scholar 

  5. G. Pu, L. Yi, L. Zhang et al., Light Sci. Appl. 9, 13 (2020)

    ADS  Google Scholar 

  6. E. Ntongwe Mesumbe, A.M. Dikandé, Opt. Quantum Electron. 51, 360 (2019)

    Google Scholar 

  7. D.J. Fandio Jubgang, A.M. Dikandé, J. Opt. Soc. Am. B 34, 2721 (2017)

    ADS  Google Scholar 

  8. O.E. Martinez, R.L. Fork, J.P. Gordon, Opt. Lett. 9, 156 (1984)

    ADS  Google Scholar 

  9. R. Well, R.B. Vodonos, A. Gordon, O. Gat, B. Fischer, Phys. Rev. E 76, 031112 (2007)

    ADS  Google Scholar 

  10. N.N. Akhmediev, M.J. Lederer, B. Luther-Davies, Phys. Rev. E 57, 3664 (1998)

    ADS  Google Scholar 

  11. C.J. Chen, P.K.A. Wai, C.R. Menyuk, Opt. Lett. 20, 350 (1994)

    ADS  Google Scholar 

  12. R. Paschotta, U. Keller, Appl. Phys. B 73, 653 (2001)

    ADS  Google Scholar 

  13. V.L. Kalashnikov, E. Sorokin, I.T. Sorokina, IEEE J. Quantum Electron. 39, 323 (2003)

    ADS  Google Scholar 

  14. D.Y. Tang, H. Zhang, L.M. Zhao, X. Wu, Phys. Rev. Lett. 101, 153904 (2008)

    ADS  Google Scholar 

  15. C.L. Pan, C.D. Hwang, J.C. Kuo, J.M. Shieh, K.H. Wu, Opt. Lett. 17, 1444 (1992)

    ADS  Google Scholar 

  16. E.M. Beltrán, Rare-Earth doped optical fibers, in Selected Topics on Optical Fiber Technology, ed. by M. Yasin (InTech Publishing, China, 2012)

  17. T. Miyoshi, M. Makidera, T. Kawamura, S. Kashima, S. Matsuo, T. Kaneda, Jpn. J. Appl. Phys. 41, 5262 (2002)

    ADS  Google Scholar 

  18. Q. Wang, J. Geng, T. Luo, S. Jiang, Opt. Lett. 34, 3616 (2009)

    ADS  Google Scholar 

  19. G.P. Agarwal, Nonlinear Fiber Optics, 1st edn. (Academic, Boston, 1989)

    Google Scholar 

  20. K.A Williams, H.D Summers, M.K.A Rahman, J. Muller, F.R Laughton, I.H White, R.V Penty, Z. Jiang, J. Sarma, I. Middlemast, J.D. Ralston, Monolithic passive mode-locking in single contact tapered lasers, in LEOS ’95. IEEE Lasers and Electro-Optics Society 1995 Annual Meeting. 8th Annual Meeting, vol. 2 (1995), pp. 135–135

  21. J. Mulet, M. Kroh, J. Mork, Opt. Express 14, 1119 (2006)

    ADS  Google Scholar 

  22. A. Quarterman, K.G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. Elsmere, I. Farrer, D. Ritchie, A. Tropper, Nat. Photonics 3, 729 (2009)

    ADS  Google Scholar 

  23. A. Schmitt-Sody, A. Velten, Y. Liu, L. Arissian, J.-C. Diels, Res. Lett. Opt. 2008, 865092 (2008)

    Google Scholar 

  24. F. If, P.L. Christiansen, J.L. Elgin, J.D. Gibbon, O. Skovgaard, Opt. Commun. 57, 350 (1986)

    ADS  Google Scholar 

  25. K.J. Blow, D. Wood, J. Opt. Soc. Am. B 5, 629 (1988)

    ADS  Google Scholar 

  26. J.M. Hickmann, S.B. Cavalcanti, N.M. Borges, E.A. Gouveia, A.S. Gouveia-Neto, Opt. Lett. 18, 182 (1993)

    ADS  Google Scholar 

  27. M.L. Lyra, A.S. Gouveia-Neto, Opt. Commun. 108, 117 (1994)

    ADS  Google Scholar 

  28. B. Zhao, D.Y. Tang, P. Shum, W.S. Man, H.J. Tam, Y.D. Gong, C. Lu, Opt. Commun. 229, 363 (2004)

    ADS  Google Scholar 

  29. F. Li, P.K.A. Wai, J.N. Kutz, J. Opt. Soc. Am. B 27, 2068 (2010)

    ADS  Google Scholar 

  30. D.Y. Tang, L.M. Zhao, F. Li, Europhys. Lett. 71, 56 (2005)

    ADS  Google Scholar 

  31. L.M. Zhao, D.Y. Tang, A.Q. Liu, Chaos 16, 013128 (2006)

    ADS  Google Scholar 

  32. M.L. Zhao, D.L. Tang, B. Zhao, Opt. Commun. 252, 167 (2005)

    ADS  Google Scholar 

  33. F.X. Kärtner, I.D. Jung, U. Keller, IEEE J. Sel. Top. Quantum Electron. 2, 540 (1996)

    ADS  Google Scholar 

  34. H.A. Haus, E.P. Ippen, K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994)

    ADS  Google Scholar 

  35. J.M. Soto-Crespo, N.N. Akhmediev, J. Opt. Soc. Am. B 16, 674 (1999)

    ADS  Google Scholar 

  36. J.M. Soto-Crespo, N.N. Akhmediev, G. Town, J. Opt. Soc. Am. B 19, 234 (2002)

    ADS  Google Scholar 

  37. J.M. Soto-Crespo, M. Grapinet, P. Grelu, N.N. Akhmediev, Phys. Rev. E 70, 066612 (2004)

    ADS  Google Scholar 

  38. A. Cabada, Green’s Functions in the Theory of Ordinary Differential Equations (Springer, Berlin, 2014)

    MATH  Google Scholar 

  39. H. Luther, Math. Comput. 22, 434 (1968)

    Google Scholar 

  40. N.N. Akhmediev, V.V. Afanasjev, J.M. Soto-Crespo, Phys. Rev. E 53, 1190 (1996)

    ADS  Google Scholar 

  41. I.S. Aranson, L. Kramer, Rev. Mod. Phys. 74, 99 (2002)

    ADS  Google Scholar 

Download references

Acknowledgements

The work of A. M. Dikandé is supported by the Abdus Salam International Centre for Theoretical Physics (ICTP), within the framework of the “ICTP Senior Associateship” scheme. The authors thank the reviewer for enriching comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain M. Dikandé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leke, P.A., Dikandé, A.M. Dynamics of passively mode-locked lasers with saturable absorber and saturable nonlinearity. Appl. Phys. B 126, 157 (2020). https://doi.org/10.1007/s00340-020-07510-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07510-8

Navigation