Skip to main content
Log in

A tri-band monopole antenna loaded with circular electric–inductive–capacitive metamaterial resonator for wireless application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The triband circular electric–inductive–capacitive (ELC)-based monopole antenna for wireless application is proposed. The proposed structure has a closed ring resonator and an ELC metamaterial resonator, which are connected by a small metal stub. ELC, with its unique negative permeability property, modifies the current direction and creates a new resonance that results in multiband characteristics for the proposed antenna. The fabrication of the proposed antenna is done on an FR4 substrate having the dimension 32 × 36 × 1.6 mm3. The measured results show multiband characteristics at 2.23 GHz, 2.56 GHz, and 4.29 GHz with return loss equal to − 34.21 dB, − 25.83 dB, and − 35.89 dB, respectively. The simulated resonant frequency of the proposed circular ELC is validated with quasi-static analysis, and it could be observed that the simulated and quasi-static analysis results comply with each other. Also, the negative permeability and new resonance of the proposed circular ELC metamaterial resonator are verified using the parameter extraction method. The measured and simulated radiation pattern also displays an excellent uniformity between them. The small size, ease in design, minimal return loss, multiband characteristics, and a considerable gain are the significant features of the proposed work.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G. Liu, M. Fang, R. Zhi, J. Bai, Z. Zeng, Prog. Electromagn. Res. Lett. 65, 9 (2017). https://doi.org/10.2528/PIERL16102203

    Article  Google Scholar 

  2. M. Nanda-Kumar, T. Shanmuganantham, Comput. Electr. Eng. 71, 667 (2018). https://doi.org/10.1016/j.compeleceng.2018.08.011

    Article  Google Scholar 

  3. T. Kingsuwannaphong, V. Sittakul, Comput. Electr. Eng. 65, 554 (2018). https://doi.org/10.1016/j.compeleceng.2017.02.027

    Article  Google Scholar 

  4. P. Chaurasia, B.K. Kanaujia, S. Dwari, M.K. Khandelwal, AEUE Int. J. Electron. Commun. (2018). https://doi.org/10.1016/j.aeue.2018.11.036

    Article  Google Scholar 

  5. A. Tanweer-Alia, W.M. Saadha, R. Biradara, J. Anguerab, A. Andújar, Int. J. Electron. Commun. 82, 368 (2017). https://doi.org/10.1016/j.aeue.2017.11.033

    Article  Google Scholar 

  6. W.A.G. Al-tumah, R.M. Shaaban, A.S. Tahir, Int. J. Electron. Commun. 2020, 153133 (2020). https://doi.org/10.1016/j.aeue.2020.153133

    Article  Google Scholar 

  7. T. Ali, Microw. Opt. Technol. Lett. 2017, 2 (2017). https://doi.org/10.1002/mop.30454

    Article  Google Scholar 

  8. T. Ali, M.S. Aw, R.C. Biradar, Int. J. Microw. Wirel. Technol. 2018, 1 (2018). https://doi.org/10.1017/s1759078718000272

    Article  Google Scholar 

  9. O.W. Ata, M. Salamin, K. Abusabha, Comput. Electr. Eng. 84, 106608 (2020). https://doi.org/10.1016/j.compeleceng.2020.106608

    Article  Google Scholar 

  10. K. Kumar-Naik, AEU Int. J. Electron. Commun. 93, 103 (2018). https://doi.org/10.1016/j.aeue.2018.06.008

    Article  Google Scholar 

  11. Ramasamy Pandeeswari, Prog. Electromagn. Res. C 80, 111 (2018). https://doi.org/10.2528/PIERC17101501

    Article  Google Scholar 

  12. T.A.G. Geetharamani, Wirel. Pers. Commun. (2020). https://doi.org/10.1007/s11277-020-07283-5

    Article  Google Scholar 

  13. M. Labidi, R. Salhi, F. Choubani, Appl. Phys. A Mater. Sci. Process. 123, 1 (2017). https://doi.org/10.1007/s00339-017-0924-3

    Article  Google Scholar 

  14. P. Dawar, A. De, N.S. Raghava, Radioelectron. Commun. Syst. 61, 394 (2018). https://doi.org/10.3103/S0735272718090029

    Article  Google Scholar 

  15. R.S. Daniel, AEUE Int. J. Electron. Commun. (2020). https://doi.org/10.1016/j.aeue.2020.153147

    Article  Google Scholar 

  16. N.T. Selvi, P.T. Selvan, R. Pandeeswari, Comput. Electr. Eng. 84, 84 (2020). https://doi.org/10.1016/j.compeleceng.2020.106613

    Article  Google Scholar 

  17. N. Rajak, N. Chattoraj, R. Mark, AEUE Int. J. Electron. Commun. 109, 23 (2019). https://doi.org/10.1016/j.aeue.2019.07.003

    Article  Google Scholar 

  18. R.K. Saraswat, Int. J. RF Microw. Comput. Eng. 2019, 1 (2019). https://doi.org/10.1002/mmce.21824

    Article  Google Scholar 

  19. R. Rajkumar, K.U. Kiran, Opt. Microw. Technnologies 2018, 91 (2018). https://doi.org/10.1007/978-981-10-7293-2_10

    Article  Google Scholar 

  20. A.K. Pandey, M. Chauhan, V.K. Killamsety, B. Mukherjee, Int. J. RF Microw. Comput. Eng. 29, 1 (2019). https://doi.org/10.1002/mmce.21968

    Article  Google Scholar 

  21. S.K.P.R. Boopathi-Rani, Microw. Opt. Technol. Lett. 55, 304 (2016). https://doi.org/10.1002/mop.30292

    Article  Google Scholar 

  22. H. Rajabloo, V. Amiri-Kooshki, H. Oraizi, AEu Int. J. Electron. Commun. 73, 144 (2017). https://doi.org/10.1016/j.aeue.2016.12.027

    Article  Google Scholar 

  23. A.M. Tamim, M. Rashed, I. Faruque, M.U. Khandaker, M.T. Islam, D.A. Bradley, Radiat. Phys. Chem. (2020). https://doi.org/10.1016/j.radphyschem.2020.108976

    Article  Google Scholar 

  24. N. Mishra, R.K. Chaudhary, Int. J. Electron. Lett. 7, 68 (2019). https://doi.org/10.1080/21681724.2018.1426112

    Article  Google Scholar 

  25. G. Singh, B.K. Kanaujia, V.K. Pandey, D. Gangwar, S. Kumar, Int. J. Microw. Wirel. Technol. 12, 163 (2020). https://doi.org/10.1017/S1759078719001077

    Article  Google Scholar 

  26. K.P. Ray, G. Kumar, P. Anob, Microw. Opt. Technol. Lett. 48, 2459 (2006). https://doi.org/10.1002/mop.21977

    Article  Google Scholar 

  27. N.P. Agrawall, G. Kumar, K.P. Ray, IEEE Trans. Antennas Propag. 46, 294 (1998). https://doi.org/10.1109/8.660976

    Article  ADS  Google Scholar 

  28. R.S. Daniel, R. Pandeeswari, S. Raghavan, Appl. Phys. A Mater. Sci. Process. 2018, 124 (2018). https://doi.org/10.1007/s00339-018-1985-7

    Article  Google Scholar 

  29. F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K.B. Alici, E. Ozbay, IEEE Trans. Microw. Theory Tech. 55, 2865 (2007). https://doi.org/10.1109/TMTT.2007.909611

    Article  ADS  Google Scholar 

  30. D.R.S.D. Schurig, J.J. Mock, D.R. Smith, Appl. Phys. A Mater. Sci. Process. 2016, 88 (2006). https://doi.org/10.1063/1.2166681

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad Jones Christydass Sam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sam, P.J.C., Gunavathi, N. A tri-band monopole antenna loaded with circular electric–inductive–capacitive metamaterial resonator for wireless application. Appl. Phys. A 126, 774 (2020). https://doi.org/10.1007/s00339-020-03952-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03952-1

Keywords

Navigation