Skip to main content
Log in

Density and Temperature Fluctuations behind a Shock Wave under the Influence of a Stratified Energy Source

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

For the conditions obtained in experiments on the interaction between a shock wave and the ionization-unstable plasma, the influence of a thermally stratified energy source on the front of a shock wave is numerically modeled on the basis of the full system of Navier–Stokes equations. It is shown that the front curvature detected in schlieren images is associated with a higher temperature of central layers in the source, while its disappearance is due to the multiple generation of Richtmyer–Meshkov instabilities in the gas density field. It is demonstrated that the redistribution of source energy into layers leads to the formation of local areas with a gas temperature increased by several times (in comparison with the values for a homogeneous source) behind a shock wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. D. D. Knight, Energy Deposition for High-Speed Flow Control (Cambridge Univ. Press, Cambridge, 2019).

    Book  Google Scholar 

  2. M. Y. M. Ahmed and N. Qin, Prog. Aerospace Sci. 112, 100585 (2020).

    Article  Google Scholar 

  3. A. Russell, H. Zare-Behtash, and K. Kontis, J. Electrostat. 4, 1 (2016).

  4. A. W. Houpt, B. E. Hedlund, S. B. Leonov, T. Ombrello, and C. D. Carter, in Proceedings of the 48th AIAA Plasmadynamics and Lasers Conference, Denver, Colorado,2017, Paper AIAA-2017-3476. https://doi.org/10.2514/6.2017-3476

  5. O. A. Azarova, Aerospace 2, 118 (2015).

    Article  Google Scholar 

  6. O. A. Azarova, A. V. Erofeev, and T. A. Lapushkina, Tech. Phys. Lett. 43, 405 (2017).

    Article  ADS  Google Scholar 

  7. R. Mahamud, D. W. Hartman, and A. A. Tropina, J. Phys. D: Appl. Phys. (2020, in press).

  8. T. A. Lapushkina, A. V. Erofeev, O. A. Azarova, and O. V. Kravchenko, Tech. Phys. 64, 34 (2019).

    Article  Google Scholar 

  9. T. A. Lapushkina, A. V. Erofeev, O. A. Azarova, and O. Kravchenko, Aerospace Sci. Technol. 85, 347 (2019).

    Article  Google Scholar 

  10. Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991).

    Book  Google Scholar 

  11. P. J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, 1976).

    MATH  Google Scholar 

  12. K. Kourtzanidis, L. L. Raja, S. Coumar, and V. Lago, in Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA,2016, Paper AIAA-2016-2157. https://doi.org/10.2514/6.2016-2157

  13. O. A. Azarova, Comput. Math. Math. Phys. 55, 2025 (2015).

    Article  MathSciNet  Google Scholar 

  14. J. F. Hawley and N. J. Zabusky, Phys. Rev. Lett. 63, 1241 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Lapushkina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarova, O.A., Kravchenko, O.V., Lapushkina, T.A. et al. Density and Temperature Fluctuations behind a Shock Wave under the Influence of a Stratified Energy Source. Tech. Phys. Lett. 46, 649–652 (2020). https://doi.org/10.1134/S1063785020070032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020070032

Keywords:

Navigation