Skip to main content
Log in

Influence of Horizontal Ionosphere Nonuniformity on the Spatial Distribution of Ultralow-Frequency Magnetic Fields from Ground-Based Sources

  • Published:
Radiophysics and Quantum Electronics Aims and scope

A significant difference was found in the amplitude and polarization spectra of ULF magnetic noise at stations with a base of 120 km during periods of absence of regional thunderstorm activity. A simultaneous analysis of low-frequency data and ionosonde data allowed us to conclude that the difference in the main parameters of the polarization spectrum at two stations is due to the appearance of sporadic Es layers having a nonuniform horizontal intensity distribution with characteristic scales of the order of the base between stations. A difference in the depth of variations in the polarization parameter ε was also found during the ionosphere recovery after magnetic storms. It could be related with Es layers, which had not only a nonuniform intensity distribution, but were also located at different altitudes. A difference was found in the frequency scales of the spectral resonance structure during recording of time variations of its fundamental frequencies. Numerical calculations of the parameter ε with specifying model Es layers and electron-density profiles corrected at the altitudes of the ionospheric F layer adequately explained the observed difference in the magnetic noise spectra and allowed us to determine the altitudes at which the horizontal ionospheric irregularity existed. The studies were carried out on the basis of records of horizontal magnetic components at Radiophysical Research Institute midlatitude observatories Novaya Zhizn (56° N, 45.74° E) and Staraya Pustyn (55.66° N, 43.63° E, 120 km east of the first reception point).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.V.Polyakov, B. I. Reznikov, Yu.V. Shlyugaev, and Yu.A. Kopytenko, Radiophys. Quantum Electron., 49, No. 12, 937 (2006).

    Article  ADS  Google Scholar 

  2. S.V.Polyakov, A.V. Shchennikov, and Z. Tang, Radiophys. Quantum Electron., 57, No. 7, 498 (2014).

    Article  ADS  Google Scholar 

  3. P.P. Belyaev, S.V. Polyakov, V.O. Rapoport, and V.Yu.Trakhtengerts, Sov. Phys. Dokl., 32, 983 (1987).

    ADS  Google Scholar 

  4. P.P. Belyaev, S.V. Polyakov, V.O. Rapoport, and V.Yu.Trakhtengerts, Radiophys. Quantum Electron., 32, No. 7, 594 (1989).

    Article  ADS  Google Scholar 

  5. T. Bösinger, C. Haldoupis, P.P. Belyaev, et al., J. Geophys. Res. A, 107, No. 10, 1281 (2002).

    Article  ADS  Google Scholar 

  6. E. N. Ermakova, S.V.Polyakov, and N.V. Semenova, Radiophys. Quantum Electron., 54, No. 12, 796 (2011).

    Article  ADS  Google Scholar 

  7. P. P. Belyaev, S.V. Polyakov, E.N. Ermakova, et al., Radiophys. Quantum Electron., 45, No. 2, 135 (2002).

    Article  Google Scholar 

  8. E. N. Ermakova, D. S. Kotik, S.V.Polyakov, and A.V. Shchennikov, Radiophys. Quantum Electron., 50, No. 7, 555 (2007).

    Article  ADS  Google Scholar 

  9. J. E. Titheridge, J. Atmos. Sol. Terr. Phys., 65, No. 9, 1035 (2003).

    Article  ADS  Google Scholar 

  10. E. N. Ermakova, D. S. Kotik, A.V.Pershin, et al., Radiophys. Quantum Electron., 55, Nos. 10–11, 605 (2012).

    ADS  Google Scholar 

  11. E. N. Ermakova, D. S. Kotik, A.V.Ryabov, and A.A.Panyutin, Radiophys. Quantum Electron., 57, No. 11, 782 (2014).

    Article  ADS  Google Scholar 

  12. T. Bösinger and S. L. Shalimov, Ann. Geophysicae, 22, 1 (2004).

    Google Scholar 

  13. T. Bösinger, A. G. Demekhov, E. N. Ermakova, et al., J. Geophys. Res. Space Phys., 119, No. 5, 4109 (2014).

    Article  ADS  Google Scholar 

  14. E. N. Ermakova, D. S. Kotik, A.V.Pershin, et al., Radiophys. Quantum Electron., 59, No. 12, 947 (2016).

    Article  ADS  Google Scholar 

  15. E. N. Ermakova, D. S. Kotik, and S. V. Polyakov, Radiophys. Quantum Electron., 51, No. 7, 519 (2008).

    Article  ADS  Google Scholar 

  16. T. Bösinger, E. N. Ermakova, C. Haldoupis, and D. S. Kotik, Ann. Geophysicae, 27, 1313 (2009).

    Article  ADS  Google Scholar 

  17. V. V. Kirillov and V. N. Kopeikin, Radiophys. Quantum Electron., 46, No. 1, 1 (2003).

    Article  ADS  Google Scholar 

  18. https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016 vitmo.php .

  19. https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php .

  20. E. Fedorov, N. Mazur, V. Pilipenko, and L. Baddeley, J. Geophys. Res. Space Phys., 121, No. 11, 11282 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Ermakova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 5, pp. 349–365, May 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermakova, E.N., Pershin, A.V., Ryabov, A.V. et al. Influence of Horizontal Ionosphere Nonuniformity on the Spatial Distribution of Ultralow-Frequency Magnetic Fields from Ground-Based Sources. Radiophys Quantum El 62, 311–325 (2019). https://doi.org/10.1007/s11141-019-09979-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-019-09979-6

Navigation