Skip to main content
Log in

Superconducting Microstructures with High Impedance

  • SUPERCONDUCTIVITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The transport properties of two types of quasi-one-dimensional superconducting microstructures were investigated at ultra-low temperatures: the narrow channels close-packed in the shape of meander, and the chains of tunneling contacts “superconductor-insulator-superconductor.” Both types of the microstructures demonstrated high value of high-frequency impedance and-or the dynamic resistance. The study opens up potential for using of such structures as current stabilizing elements with zero dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. G. Moore, Electronics 38, 114 (1965).

    Google Scholar 

  2. K. K. Likharev and V. K. Semenov, IEEE Trans. Appl. Supercond. 1, 3 (1991).

    Article  ADS  Google Scholar 

  3. K. Yu. Arutyunov, D. Golubev, and A. D. Zaikin, Phys. Rep. 464, 1 (2008).

    Article  ADS  Google Scholar 

  4. A. D. Zaikin and S. V. Panyukov, Phys. Lett. A 120, 306 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  5. D. V. Averin and A. A. Odintsov, Phys. Lett. A 140, 251 (1989).

    Article  ADS  Google Scholar 

  6. A. D. Zaikin, J. Low Temp. Phys. 80, 223 (1990).

    Article  ADS  Google Scholar 

  7. J. E. Mooij and Y. V. Nazarov, Nat. Phys. 2, 169 (2006).

    Article  Google Scholar 

  8. L. S. Kuzmin and D. S. Havil, Phys. Rev. Lett. 67, 2890 (1991).

    Article  ADS  Google Scholar 

  9. T. T. Hongisto and A. B. Zorin, Phys. Rev. Lett. 108, 097001 (2012).

    Article  ADS  Google Scholar 

  10. J. S. Lehtinen, K. Zakharov, and K. Yu. Arutyunov, Phys. Rev. Lett. 109, 187001 (2012).

    Article  ADS  Google Scholar 

  11. C. H. Webster, J. C. Fenton, T. T. Hongisto, S. P. Giblin, A. B. Zorin, and P. A. Warburton, Phys. Rev. B 87, 144510 (2013).

    Article  ADS  Google Scholar 

  12. A. J. Annunziata, PhD Thesis (Yale Univ., New Haven, CT, 2010).

  13. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. M. Voronov, Appl. Phys. Lett. 88, 111116 (2006).

    Article  ADS  Google Scholar 

  14. A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. Gol’tsman, and B. M. Voronov, Appl. Phys. Lett. 90, 101110 (2007).

    Article  ADS  Google Scholar 

  15. M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1996).

    Google Scholar 

  16. J. S. Lehtinen, T. Sajavaara, K. Yu. Arutyunov, M. Yu. Presnjakov, and A. Vasiliev, Phys. Rev. B 85, 094508 (2012).

    Article  ADS  Google Scholar 

  17. K. Yu. Arutyunov, J. S. Lehtinen, and T. J. Rantala, J. Supercond. Nov. Magn. 29, 569 (2016).

    Article  Google Scholar 

  18. K. Yu. Arutyunov and J. S. Lehtinen, Nanoscale Res. Lett. 11, 364 (2016).

    Article  ADS  Google Scholar 

  19. K. Yu. Arutyunov and J. S. Lehtinen, Phys. C (Amsterdam, Neth.) 533, 158 (2017).

  20. K. Yu. Arutyunov, J. S. Lehtinen, A. A. Radkevich, A. G. Semenov, and A. D. Zaikin, J. Magn. Magn. Mater. 459, 356 (2018).

    Article  ADS  Google Scholar 

  21. K. Yu. Arutyunov, A. Ramos-Álvarez, A. V. Semenov, Yu. P. Korneeva, P. P. An, A. A. Korneev, A. Murphy, A. Bezryadin, and G. N. Gol’tsman, Nanotechnology 27, 47LT021 (2016).

  22. K. Yu. Arutyunov, S. V. Lotkhov, A. B. Pavolotski, D.A. Presnov, and L. Rinderer, Phys. Rev. B 59, 6487 (1999).

    Article  ADS  Google Scholar 

  23. K. Yu. Arutyunov, Phys. Rev. B 53, 12304 (1996).

    Article  ADS  Google Scholar 

  24. K. Yu. Arutyunov, T. V. Ryynanen, J. P. Pekola, and A. B. Pavolotski, Phys. Rev. B 63, 092506 (2001).

    Article  ADS  Google Scholar 

  25. V. V. Zavyalov, S. A. Chernyaev, K. V. Shein, A. G. Shukaleva, and K. Yu. Arutyunov, J. Phys.: Conf. Ser. 969, 012086 (2018).

    Google Scholar 

  26. A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks, A. Frydman, and D. E. Prober, Nanotechnology 21, 445202 (2010).

    Article  Google Scholar 

  27. Z. M. Wang, J. S. Lehtinen, and K. Yu. Arutyunov, Appl. Phys. Lett. 114, 242601 (2019).

    Article  ADS  Google Scholar 

  28. G. Schön and A. D. Zaikin, Phys. Rep. 198, 237 (1990).

    Article  ADS  Google Scholar 

Download references

Funding

Statement of the problem, analysis of the results, and drafting of the text of paper were carried out by K.Yu. Aru-tyunov and were supported by the project no. 19-01-050 under the HSE Academic Fund Program in 2019–2020, and under the state support by Russian Academic Excellence Project “5-100”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yu. Arutyunov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Levina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shein, K.V., Zarudneva, A.A., Emel’yanova, V.O. et al. Superconducting Microstructures with High Impedance. Phys. Solid State 62, 1539–1542 (2020). https://doi.org/10.1134/S1063783420090280

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420090280

Keywords:

Navigation