Skip to main content
Log in

Spin-Dependent Electron Transport in MeRAM

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The paper presents theoretical model of a straintronics magnetoelectric random-access memory (MeRAM) storage cell with configurational anisotropy. The MeRAM cell consists of ferromagnetic layers with different orientations of the quasi-uniform magnetization, which is divided into identical magnetic tunnel junction’s ferromagnet|insulator|ferromagnet, in the form of a sandwich of planar layers. The modified theory for magnetic tunnel junction is used to calculate the spin-dependent current and tunnel magnetoresistance like functions of orientations magnetizations of layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Bukharaev, A. K. Zvezdin, A. P. Pyatakov, and Yu. K. Fetisov, Phys. Usp. 61, 1175 (2018).

    Article  ADS  Google Scholar 

  2. J. Atulasimha and S. Bandyopadhyay, Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing (Wiley, Chichester, 2016).

    Book  Google Scholar 

  3. M. Barangi and P. Mazumder, IEEE Nanotechnol. Mag. 9, 15 (2015).

    Article  Google Scholar 

  4. C.-Y. Liang, A. Sepulveda, S. Keller, and G. P. Carman, J. Appl. Phys. 119, 113903 (2016).

    Article  ADS  Google Scholar 

  5. G. Varvaro and F. Casoli, Ultra-High-Density Magnetic Recording. Storage Materials and Media Designs (CRC, New York, 2016).

    Book  Google Scholar 

  6. K. L. Wang, J. G. Alzate, and P. Khalili Amiri, J. Phys. D: Appl. Phys. 46, 74003 (2013).

    Article  Google Scholar 

  7. S. Salahuddin and S. Datta, Appl. Phys. Lett. 90, 093503 (2007).

    Article  ADS  Google Scholar 

  8. C. Tannous and J. Gieraltowski, Eur. J. Phys. 29, 475 (2008).

    Article  Google Scholar 

  9. J. Atulasimha and S. Bandyopadhyay, Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing (Wiley, New York, 2016).

    Book  Google Scholar 

  10. N. D’Souza, M. Salehi-Fashami, S. Bandyopadhyay, and J. Atulasimha, Nano Lett. 16, 1069 (2016).

    Article  ADS  Google Scholar 

  11. D. A. Bizyaev, A. A. Bukharaev, A. P. Chuklanov, and N. I. Nurgazizov, Phys. Solid State 60, 2194 (2018).

    Article  ADS  Google Scholar 

  12. A. Bukharaev, D. A. Bizyaev, N. I. Nurgazizov, A. P. Chuklanov, and N. Kh. Useinov, J. Magn. Magn. Mater. 500, 166315 (2020).

    Article  Google Scholar 

  13. M. Yamamoto and S. Taniguchi, Phys. Chem. Metall. 7, 35 (1955).

    Google Scholar 

  14. P. Talagala, P. S. Fodor, D. Haddad, R. Naik, L. E. Wenger, P. P. Vaishnava, and V. M. Naik, Phys. Rev. B 66, 144426 (2002).

    Article  ADS  Google Scholar 

  15. M. J. Donahue and D. G. Porter, OOMMF User’s Guide, Version 1.0 (Natl. Inst. Standards Technol., Gaithersburg, MD, USA, 1999). http://math.nist.gov/oommf.

    Book  Google Scholar 

  16. J. de la Venta, S. Wang, J. G. Ramirez, and I. K. Schuller, Appl. Phys. Lett. 102, 122404 (2013).

    Article  ADS  Google Scholar 

  17. A. N. Useinov, R. G. Deminov, N. Kh. Useinov, and L. R. Tagirov, Phys. Status Solidi B 247, 1797 (2010).

    Article  ADS  Google Scholar 

  18. A. N. Useinov, C.-H. Lai, N. Kh. Useinov, and L. R. Tagirov, in Novel Magnetic Nanostructures, 1st ed. (Unique Properties Appl., Elsevier, 2018), Chap. 1, p. 373.

  19. J. C. Slonczewski, Phys. Rev. B 39, 6995 (1989).

    Article  ADS  Google Scholar 

  20. R. P. Erickson, B. Hathaway, and J. R. Cullen, Phys. Rev. B 47, 2626 (1993).

    Article  ADS  Google Scholar 

  21. M. B. Stearns, J. Magn. Magn. Mater. 5, 167 (1977).

    Article  ADS  Google Scholar 

  22. A. Manchon, N. Ryzhanova, N. Strelkov, A. Vedyayev, and B. Dieny, J. Phys.: Condens. Matter 19, 165212 (2007).

    ADS  Google Scholar 

  23. D. A. Lifatova, A. V. Vedyaev, N. V. Ryzhanova, O. A. Kotel’nikova, M. G. Chshiev, and N. V. Strelkov, J. Exp. Theor. Phys. 129, 283 (2019).

    Article  ADS  Google Scholar 

  24. E. Camblong, P. M. Levy, and S. Zhang, Phys. Rev. B 51, 16052 (1995).

    Article  ADS  Google Scholar 

  25. M. Sharma, S. X. Wang, and J. H. Nickel, Phys. Rev. Lett. 82, 616 (1999).

    Article  ADS  Google Scholar 

Download references

Funding

The computer simulation was partially supported by the Russian Foundation for Basic Research (project no. 18-02-00204). The elaboration of the theoretical model was partially funded by the Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kh. Useinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Useinov, N.K., Chuklanov, A.P., Bizyaev, D.A. et al. Spin-Dependent Electron Transport in MeRAM. Phys. Solid State 62, 1706–1712 (2020). https://doi.org/10.1134/S1063783420090310

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420090310

Keywords:

Navigation