Skip to main content
Log in

Relationship between the Surface Morphology of Thin YBa2Cu3O7 – x Films Obtained by Pulsed Laser Deposition and the Endset Temperature of Superconducting Transition

  • LOW-DIMENSIONAL SYSTEMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A correlation was found between the endset temperature of the superconducting transition T(R = 0) of YBa2Cu3O7 – x films 100–200 nm thick, obtained by pulsed laser deposition on SrTiO3(100) substrates with a temperature of ~740°C, and the regimes of high-speed filtering of the erosion plume formed upon ablation of the material the target. Under deposition conditions, we changed the width of the filtering window, the repetition rate of the atomized material passing through the filter onto the substrate, and the radiation energy density of the KrF excimer laser on the target surface. At deposition rates of less than 0.1 nm s–1, the values of T(R = 0) did not exceed 77 K, and pyramids were formed on the surface of the films up to 80 nm in height along the c axis in the form of spirals with rectangular bases and steps of 1–2 nm along the lateral faces. With an increase in the deposition rate from 0.1 to 0.6 nm s–1, T(R = 0) increased to 86 K. These regimes corresponded to a wavy pyramid surface up to 40 nm in height with rounded bases up to 1500 nm in diameter and irregular steps 1–4 nm on the side slopes. Faceted crystals with a width from 20–30 to 500 nm in the base grew along the boundaries between the pyramids during the deposition. This morphology of the growth surface was explained by the high flow rate of the sputtered material, which is determined by the frequency filtering of the erosion plume and the energy density in the pulse upon predominantly surface diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. B. Dam, J. Rector, M. F. Chang, S. Kars, and D. G. de Groot, Appl. Phys. Lett. 65, 1581 (1994).

    Article  ADS  Google Scholar 

  2. Pulsed Laser Deposition of Thin Films, Ed. by D. B. Chri-sey and G. K. Hubler (Wiley, New York, 1994).

    Google Scholar 

  3. K. H. Wu, S. P. Chen, J. Y. Juang, T. M. Uen, et al., Phys. C (Amsterdam, Neth.) 289, 230 (1997).

  4. C. Gerger, D. Anslemetti, J. G. Bednorz, J. Mannhart, and D. G. Schlom, Nature (London, U.K.) 350, 279 (1991).

    Article  ADS  Google Scholar 

  5. B. Dam, J. H. Rector, J. M. Huijbregtse, and R. Griessen, Phys. C (Amsterdam, Neth.) 305, 1 (1998).

  6. A. I. Il’in, A. A. Ivanov, O. V. Trofimov, A. A. Firsov, A. V. Nikulov, and A. V. Zotov, Russ. Microelectron. 48, 119 (2019).

    Article  Google Scholar 

  7. R. Arpaia, D. Golubev, R. Baghdadi, R. Ciancio, G. Drazic, P. Orgiani, D. Montemurro, T. Bauch, and F. Lombardi, Phys. Rev. B 96, 064525 (2017).

    Article  ADS  Google Scholar 

  8. E. V. Pechen, A. V. Varlashkin, S. I. Krasnosvobodtsev, B. Brunner, and K. F. Renk, Appl. Phys. Lett. 66, 2292 (1998).

    Article  ADS  Google Scholar 

  9. A. I. Il’in, E. E. Glikman, I. Yu. Borisenko, N. D. Zakharov, and V. V. Starkov, Poverkhnost’: Fiz., Khim., Mekh. 94, 77 (1991).

    Google Scholar 

  10. A. I. Il’in, A. V. Andreeva, and B. N. Tolkunov, Mater. Sci. Forum 207–209, 625 (1996).

    Article  Google Scholar 

  11. A. I. Il’in and A. V. Andreeva, Fiz. Met. Metalloved. 80, 132 (1995).

    Google Scholar 

  12. M. Truchly, T. Plecenik, O. Krsko, M. Gregor, L. Satrapinskyy, T. Roch, B. Gran, M. Mikula, A. Dujavova, S. Chromik, P. Kus, and A. Plecenik, Phys. C (Amsterdam, Neth.) 483, 61 (2012).

  13. Y. Koike, Y. Iwabuchi, S. Hosoya, N. Kobayashi, and T. Fukase, Phys. C (Amsterdam, Neth.) 159, 105 (1989).

  14. C. N. R. Rao, J. Gopalakrishnan, A. K. Santra, and V. Manivannan, Phys. C (Amsterdam, Neth.) 174, 11 (1991).

  15. A. I. Golovashkin, PhIAS Preprint No. 10.1-32 (Lebedev Phys. Inst. Acad. Sci., Moscow, 2005).

    Google Scholar 

Download references

Funding

The work was performed according to the State assignment no. 075-00920-20-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Il’in.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’in, A.I., Trofimov, O.V. & Ivanov, A.A. Relationship between the Surface Morphology of Thin YBa2Cu3O7 – x Films Obtained by Pulsed Laser Deposition and the Endset Temperature of Superconducting Transition. Phys. Solid State 62, 1725–1731 (2020). https://doi.org/10.1134/S1063783420090115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420090115

Keywords:

Navigation