Skip to main content
Log in

Surface Electromagnetic Waves on Planar Structures: A Review

  • SURFACE ELECTROMAGNETIC AND ELASTIC WAVES
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Spectra of fluctuating, thermally stimulated electromagnetic waves radiated by a planar structure give us ample information both about the nature of electromagnetic waves generated by a crystalline lattice of the film-on-substrate structure and physical (optical) properties of a film and a substrate. In a number of cases, the study of physical properties of ultrathin films on a substrate can provide more information when oone uses nonradiative surface electromagnetic waves and surface polaritons, which are associated with electromagnetic excitations in the near field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Surface Polaritons. Electromagnetic Waves at Surfaces and Interfaces, Ed. by V. M. Agranovich and D. L. Mills (North-Holland, Amsterdam, 1982).

    Google Scholar 

  2. G. N. Zhizhin, M. A. Moskalova, E. A. Vinogradov, and V. A. Yakovlev, “Applications of surface polaritons for vibrational spectroscopic studies of thin and very thin films,” Appl. Spectrosc. Rev.18 (2), 171 (1982).

    Article  ADS  Google Scholar 

  3. E. A. Vinogradov and I. A. Dorofeyev, Thermally Stimulated Electromagnetic Fields of Solid Bodies (Fizmatgiz, Moscow, 2010) [in Russian].

    MATH  Google Scholar 

  4. M. L. Levin and S. M. Rytov, The Theory of Thermal Fluctuations at Equilibrium in Electrodynamics (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  5. R. Carminati and J. J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett.8, 1660 (1999).

    Article  ADS  Google Scholar 

  6. K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep.57, 59 (2005).

    Article  ADS  Google Scholar 

  7. E. A. Vinogradov, “Semiconductor microcavity polaritons,” Phys.-Usp.45 (12), 1213 (2002).

    Article  Google Scholar 

  8. E.A. Vinogradov, “Vibrational polaritons in semiconductor films on metal surfaces,” Phys. Rep.217 (4), 159 (1992).

    Article  ADS  Google Scholar 

  9. E. A. Vinogradov and I. A. Dorofeyev, “Thermally stimulated electromagnetic fields of solids,” Phys.-Usp.52 (5), 425 (2009).

    Article  Google Scholar 

  10. I. A. Dorofeyev and E. A. Vinogradov, “Fluctuating electromagnetic fields of solids,” Phys. Rep.504, 75 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  11. I. A. Dorofeyev and E. A. Vinogradov, “Coherence properties of thermally stimulated fields of solids,” Laser Phys.21 (1), 1 (2012).

    Article  ADS  Google Scholar 

  12. E. A. Vinogradov and I. A. Dorofeyev, “On the spectra of thermally stimulated electromagnetic fields of planar structures of complex composition – I. Nonradiative fields,” J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech.8 (1), 10 (2014).

    Article  Google Scholar 

  13. E. A. Vinogradov and I.A. Dorofeyev, “On the spectra of thermally stimulated electromagnetic fields of planar structures of complex composition – II. Radiative waves,” J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech.8 (1), 1 (2014).

    Article  Google Scholar 

  14. E. A. Vinogradov, G. N. Zhizhin, and V. A. Yakovlev, “Resonance between dipole vibrations of atoms and interference modes in crystalline films,” Sov. Phys.-JETP.50, 486 (1979).

    ADS  Google Scholar 

  15. B. N. Mavrin and E. A. Vinogradov, “Optical phonon spectra in CdTe crystals and ternary alloys of CdTe compounds,” in CdTe and Related Compounds: Physics, Defects, Technology, Hetero- and Nano-Structures and Applications, Ed. by R. Triboulet and P. Siffert (Elsevier, 2009). Chap. II. Pt. I, pp. 22–37.

  16. M. Born and E. Wolf, Principle of Optics, 4th ed. (Pergamon Press, 1970).

    Google Scholar 

  17. E. A. Vinogradov, V. L. Grachev, G. V. Grushevoi, G. N. Zhizhin, and V. I. Yudson, “Effect of the conductivity of a metallic support on the optical properties of thin dielectric films,” Sov. Phys.-JETP.48 (5), 967 (1978).

    ADS  Google Scholar 

  18. J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth.27, 118 (1974).

    ADS  Google Scholar 

  19. E. A. Vinogradov, N. N. Novikova, and V. A. Yakovlev, “Near field phonon-polariton spectroscopy as a method for studying the optical properties of nanofilms,” Phys.-Usp.57, 604 (2014).

    Article  Google Scholar 

  20. V. A. Yakovlev, N. N. Novikova, E. A. Vinogradov, S. S. Ng, Z. Hassan, and H. A. Hassan, “Strong coupling of sapphire surface polariton with aluminum nitride film phonon,” Phys. Lett. A.373, 2382 (2009).

    Article  ADS  Google Scholar 

  21. V. A. Yakovlev, N. N. Novikova, E. A. Vinogradov, S. S. Ng, Z. Hassan, and H. A. Hassan, “Sapphire surface polariton splitting due to resonance with aluminum nitride film phonon,” J. Phys.: Conf. Ser.210, 012027 (2010).

    Google Scholar 

  22. N. N. Novikova, V. A. Yakovlev, E. A. Vinogradov, S. S. Ng, Z. Hassan, and H. A. Hassan, “Substrate surface polariton splitting due to thin zinc oxide and aluminum nitride films presence,” Appl. Surf. Sci.267, 93 (2013).

    Article  ADS  Google Scholar 

  23. N. N. Novikova, E. A. Vinogradov, V. A. Yakovlev, T. V. Malin, V. G. Mansurov, and K. S. Zhuravlev, “Nitridation effect on sapphire surface polaritons,” Surf. Coat. Technol.227, 58 (2013).

    Article  Google Scholar 

  24. N. N. Novikova, E. A. Vinogradov, V. A. Yakovlev, T. V. Malin, V. G. Mansurov, and K. S. Zhuravlev, “Surface polariton spectroscopy of AlN films grown by ammonia MBE on the (0001) Al2O3 substrate,” Phys. Status Solidi C.12 (4-5), 439 (2015).

    Article  ADS  Google Scholar 

  25. E. A. Vinogradov and V. A. Yakovlev, “Study of thin film coatings by IR phonon-polariton spectroscopy methods,” J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech.12 (1), 139 (2018).

    Article  Google Scholar 

  26. V. A. Yakovlev, N. N. Novikova, E. A. Vinogradov, G. Rossetto, A. Sartori, and M. Bolzan, “Sapphire surface polariton splitting due to resonance with magnesium oxide film phonon,” J. Nanopart. Res.13 (11), 5841 (2011).

    Article  ADS  Google Scholar 

  27. V. M. Agranovich and A. G. Malshukov, “Surface polariton spectra if the resonance with the transition layer vibrations exist,” Opt. Commun.11, 169 (1974).

    Article  ADS  Google Scholar 

  28. Optoelectronic Devices: III-Nitrides. Ed. by M. Razeghi and M. Henini (Elsevier, 2004).

    Google Scholar 

  29. Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nm,” Nature.441, 325 (2006).

    Article  ADS  Google Scholar 

  30. N. Grandjean, J. Massies, and M. Leroux, “Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers,” Appl. Phys. Lett.69, 2071 (1996).

    Article  ADS  Google Scholar 

  31. K. Masu, Y. Nakamura, T. Yamazaki, S. Tomohiko, T. Michio, and T. Kazuo, “Transmission electron microscopic observation of AlN/α–Al2O3 heteroepitaxial interface with initial-nitriding AlN layer,” Jpn. J. Appl. Phys.34 (6B), L760 (1995).

    Article  Google Scholar 

  32. A. S. Barker, “Infrared lattice vibrations and dielectric dispersion in corundum,” Phys. Rev.132, 1474 (1963).

    Article  ADS  Google Scholar 

  33. I. A. Dorofeyev and E. A. Vinogradov, “Structure of Electromagnetic fields near the surface of ionic crystals,” J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech.6 (5), 796 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Vinogradov.

Ethics declarations

This work was supported by the Program of the Presidium of the Russian Academy of Sciences I.7 “Topical Problems of Photonics, Probing of Inhomogeneous Media and Materials”.

Additional information

Translated by M. Potapov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradov, E.A. Surface Electromagnetic Waves on Planar Structures: A Review. Phys. Wave Phen. 28, 1–13 (2020). https://doi.org/10.3103/S1541308X20010094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X20010094

Navigation