Skip to main content
Log in

The image reconstruction for fluorescence molecular tomography via a non-uniform mesh

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

As an optical molecular imaging modality, fluorescence molecular tomography (FMT) can monitor the activities of organisms in vivo at the molecular and cellular levels. However, the recovered image quality is affected by mesh voxel when the finite element method is utilized to recover the fluorescence probe. The target localization is likely to deviate from the actual target under the coarse mesh, but using the fine mesh will increase the number of unknowns, which makes the computational burden heavier and further aggravate the ill-posedness. To solve the problem, a reconstruction strategy using a non-uniform mesh for FMT is developed in this paper. The numerical experiment and physical experiment validated that the strategy is capable and effective for FMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig.3
Fig.4
Fig.5
Fig. 6

Similar content being viewed by others

References

  1. Ntziachristos, V., Tung, C.-H., Bremer, C., Weissleder, R.: Fluorescence molecular tomography resolves protease activity in vivo. Nat Med. 8(7), 757–761 (2002)

    Article  Google Scholar 

  2. Bai, J., Xu, Z.: Molecular Imaging: Fundamentals and Applications, pp. 185–216. Springer, Berlin (2013)

    Book  Google Scholar 

  3. Xu, C., Xin, W., Zhang, B., Fei, L., Luo, J., Jing, B.: Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction. Biomed Opt Express. 4(1), 1–14 (2013)

    Article  Google Scholar 

  4. Vasilis, N., Schellenberger, E.A., Jorge, R., Doreen, Y., Edward, G., Alexei, B., Lee, J., Ralph, W.: Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl Acad Sci USA 101(33), 12294–12299 (2004)

    Article  Google Scholar 

  5. Dimarzio, C.A., Niedre, M.: Pre-clinical optical molecular imaging in the lung: technological challenges and future prospects. J Thorac Dis 4(6), 556–557 (2012)

    Google Scholar 

  6. Chen, D., Liang, J., Li, Y., Qiu, G.: A sparsity-constrained preconditioned Kaczmarz reconstruction method for fluorescence molecular tomography. BioMed Res Int 2016, Article ID: 4504161 (2016)

    Google Scholar 

  7. Lian, L., Deng, Y., Xie, W., Xu, G., Yang, X., Zhang, Z., Luo, Q.: Enhancement of the localization and quantitative performance of fluorescence molecular tomography by using linear nBorn method. Opt Express 25(3), 2063–2079 (2017)

    Article  ADS  Google Scholar 

  8. Guven, M., Reilly-Raska, L., Zhou, L., Yazıcı, B.: Discretization error analysis and adaptive meshing algorithms for fluorescence diffuse optical tomography: Part I. IEEE Trans Med Imaging. 29(2), 217–229 (2010)

    Article  Google Scholar 

  9. Guven, M., Reilly-Raska, L., Zhou, L., Yazici, B.: Discretization error analysis and adaptive meshing algorithms for fluorescence diffuse optical tomography: Part II. IEEE Trans Med Imaging 29(2), 230–245 (2010)

    Article  Google Scholar 

  10. Zhou, L., Yazici, B.: Discretization error analysis and adaptive meshing algorithms for fluorescence diffuse optical tomography in the presence of measurement noise. IEEE Trans Image Process 20(4), 1094–1111 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  11. Wang, D., Song, X.L., Bai, J.: Adaptive-mesh-based algorithm for fluorescence molecular tomography using an analytical solution. Opt Express. 15(15), 9722–9730 (2007)

    Article  ADS  Google Scholar 

  12. Schulz, R.B., Angelique, A., Athanasios, S., Marcus, F., Eric, S., Marta, Z., Vasilis, N.: Hybrid system for simultaneous fluorescence and x-ray computed tomography. IEEE Trans Med Imaging 29(2), 465–473 (2009)

    Article  Google Scholar 

  13. Yi, H., Zhang, X., Peng, J., Zhao, F., Wang, X., Hou, Y., Chen, D., He, X.: Reconstruction for limited-projection fluorescence molecular tomography based on a double-mesh strategy. Biomed Res Int 2016, Article ID: 5682851 (2016)

    Google Scholar 

  14. Yi, H., Jiao, P., Li, X., Peng, J., He, X.: Three-way decision based reconstruction frame for fluorescence molecular tomography. J. Opt. Soc. Am. 35(11), 1814–1822 (2018)

    Article  ADS  Google Scholar 

  15. Han, D., Tian, J., Zhu, S.P., Feng, J.C., Qin, C.G., Zhang, B., Yang, X.: A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization. Opt. Express. 18(8), 8630–8646 (2010)

    Article  ADS  Google Scholar 

  16. Xiaowei, H., Jimin, L., Xiaorui, W., Jingjing, Y., Xiaochao, Q., Xiaodong, W., Yanbin, H., Duofang, C., Fang, L., Jie, T.: Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method. Opt Express. 18(24), 24825–24841 (2010)

    Article  Google Scholar 

  17. Hou, Y., Hua, X., Xin, C., Zhang, H., Xuan, Q., He, X.: Single-view enhanced cerenkov luminescence tomography based on sparse bayesian learning. Acta Optica Sinica. 37(12), 298–308 (2017)

    Google Scholar 

  18. Guo, H., Hou, Y., He, X., Yu, J., Cheng, J., Xin, P.: Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation. J. Innov. Opt. Health Sci. 7(2), Article ID 1350057 (2014)

    Article  Google Scholar 

  19. Klose, A.D., Ntziachristos, V., Hielscher, A.H.: The inverse source problem based on the radiative transfer equation in optical molecular imaging. J. Comput. Phys. 202(1), 323–345 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huangjian Yi or Xiaowei He.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “The image reconstruction for fluorescence molecular tomography via a non-uniform mesh”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Jiao, P., Yi, H. et al. The image reconstruction for fluorescence molecular tomography via a non-uniform mesh. Opt Rev 27, 31–38 (2020). https://doi.org/10.1007/s10043-019-00561-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-019-00561-z

Keywords

Navigation