Skip to main content
Log in

Bandgap modulation of low-dimensional γ-graphyne-1 under uniform strain

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Graphyne sheets and nanotubes (GyNTs) are known as novel low-dimensional, i.e., two-dimensional (2D) and one-dimensional (1D), semiconducting carbon allotropes that can be used in nanoelectronics and therefore merit fundamental investigation. Among such materials, attention is currently focused on γ-graphyne-1, a member of the graphyne family that exhibits a maximum cohesive energy of −8.37 eV and chemical stabilityhas been focused. In this research density functional tight binding (DFTB) method in the investigation of electrical property under geometrical variation is reported and a detailed description of electrical as well as stability properties for γ-graphyne-1 in uniform strain is illustrated. It is concluded that the γ-graphyne-1 family of materials exhibit semiconducting properties with large bandgap values from 1.34 eV for the sheet structure to 1.93 eV for (3,0) armchair γ-graphyne-1 nanotubes. The γ-graphyne-1 family also displays elastic properties, enabling the modulation of the bandgap and engineering of the effective mass using homogeneous strain. These properties, along with the nonmetallic behavior of GyNTs, make them perfect materials for the design of novel electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bunz, U.H.F., Rubinb, Y., Tobe, Y.: Polyethynylated cyclic p-systems: scaffoldings for novel two and three-dimensional carbon networks. Chem. Soc. Rev. 28(2), 107–119 (1999). https://doi.org/10.1039/A708900G

    Article  Google Scholar 

  2. Diederich, F.: Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds. Nature 369, 199–207 (1994). https://doi.org/10.1038/369199a0

    Article  Google Scholar 

  3. Hirsch, A.: The era of carbon allotropes. Nat. Mater. 9, 868–871 (2010). https://doi.org/10.1038/nmat2885

    Article  Google Scholar 

  4. Wu, W., Guo, W., Zeng, X.C.: Intrinsic electronic and transport properties of graphyne sheets and nanoribbons. Nanoscale 5, 9264–9276 (2013). https://doi.org/10.1039/c3nr03167e

    Article  Google Scholar 

  5. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1016/j.carbon.2011.05.024

    Article  Google Scholar 

  6. Hwang, E.H., Sarma, S.D.: Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77, 115449–115455 (2008). https://doi.org/10.1103/PhysRevB.77.115449

    Article  Google Scholar 

  7. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 381–385 (2008). https://doi.org/10.1126/science.1157996

    Article  Google Scholar 

  8. Marianetti, C.A., Yevick, H.G.: Failure mechanisms of graphene under tension. Phys. Rev. Lett. 105, 245502–245518 (2010). https://doi.org/10.1103/PhysRevLett.105.245502

    Article  Google Scholar 

  9. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–161 (2009). https://doi.org/10.1103/RevModPhys.81.109

    Article  Google Scholar 

  10. Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herrero, P.: Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 12 (2018). https://doi.org/10.1038/nature26160

    Article  Google Scholar 

  11. Matsuda, Y., Tahir-Kheli, J., Goddard, W.A.: Definitive band gaps for single-wall carbon nanotubes. J. Phys. Chem. Lett. 1, 2946–2950 (2010). https://doi.org/10.1021/jz100889u

    Article  Google Scholar 

  12. Wu, S., Yuan, Y., Cho, D., Lee, J.Y., Kang, B.: Chiral γ-graphyne nanotubes with almost equivalent bandgaps. J. Chem. Phys. 150, 054706 (2019). https://doi.org/10.1063/1.5065558

    Article  Google Scholar 

  13. Peng, Q., Dearden, A.K., Crean, J., Han, L., Liu, S., Wen, X., Det, S.: New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol. Sci. Appl. 7, 1–29 (2014). https://doi.org/10.2147/NSA.S40324

    Article  Google Scholar 

  14. Baughman, R.H., Eckhardt, H., Kertesz, M.: Structure-property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J. Chem. Phys. 87, 6687–6699 (1987). https://doi.org/10.1063/1.453405

    Article  Google Scholar 

  15. Li, Z.: Towards graphyne molecular electronics. Nat. Commun. 6, 6321–6330 (2015). https://doi.org/10.1038/ncomms7321

    Article  Google Scholar 

  16. Liu, Z., Yu, G., Yao, H., Liu, L., Jiang, L., Zheng, Y.: A simple tight-binding model for typical graphyne structures. New J. Phys. 14, 113007–113017 (2012). https://doi.org/10.1088/1367-2630/14/11/113007

    Article  Google Scholar 

  17. Narita, N., Nagai, S., Suzuki, S., Nakao, K.: Optimized geometries and electronic structures of graphyne and its family. Phys. Rev. B 58, 11009–11014 (1998). https://doi.org/10.1103/PhysRevB.58.11009

    Article  Google Scholar 

  18. Li, G., Li, Y., Liu, H., Guo, Y., Lia, Y., Zhu, D.: Architecture of graphdiyne nanoscale films. Chem. Commun. 46, 3256–3258 (2010). https://doi.org/10.1039/b922733d

    Article  Google Scholar 

  19. Li, G., Li, Y., Qian, X., Liu, H., Lin, H., Chen, N., Li, Y.: Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J. Phys. Chem. C 115, 2611–2615 (2011). https://doi.org/10.1021/jp107996f

    Article  Google Scholar 

  20. Li, Q., Li, Y., Chen, Y., Wu, L., Yang, C., Cui, X.: Synthesis of γ-graphyne by mechanochemistry and its electronic structure. Carbon (2018). https://doi.org/10.1016/j.carbon.2018.04.081

    Article  Google Scholar 

  21. Cranford, S.W., Buehler, M.J.: Mechanical properties of graphyne. Carbon 49, 4111–4121 (2011). https://doi.org/10.1016/j.carbon.2011.05.024

    Article  Google Scholar 

  22. Couto, R., Silvestre, N.: Finite element modelling and mechanical characterization of graphyne. J. Nanomater. 2016, 15 (2016). https://doi.org/10.1155/2016/7487049

    Article  Google Scholar 

  23. Zhu, C., Li, H., Zeng, X.C., Wang, E.G., Meng, S.: Quantized water transport: ideal desalination through graphyne-4 membrane. Sci. Rep. 3, 3163–3169 (2013). https://doi.org/10.1038/srep03163

    Article  Google Scholar 

  24. Shannon, M.A.: Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008). https://doi.org/10.1142/9789814287005_0035

    Article  Google Scholar 

  25. Humplik, T., Lee, J., O’Hern, S.C., Fellman, B.A., Baig, M.A., Hassan, S.F., Atieh, M.A., Rahman, F., Laoui, T., Karnik, R.: Nanostructured materials for water desalination. Nanotechnology 22, 292001–292019 (2011). https://doi.org/10.1088/0957-4484/22/29/292001

    Article  Google Scholar 

  26. Kang, J., Li, J., Wu, F., Li, S.S., Xia, J.B.: Elastic, electronic, and optical properties of two-dimensional graphyne sheet. J. Phys. Chem. C 115, 20466–20470 (2011). https://doi.org/10.1021/jp206751m

    Article  Google Scholar 

  27. Hou, X., Xie, Z., Li, C., Li, G., Chen, Z.: Study of electronic structure, thermal conductivity, elastic and optical properties of α, β, γ-graphyne. Materials (2018). https://doi.org/10.3390/ma11020188

    Article  Google Scholar 

  28. Singh, N.B., Bhattacharya, B., Sarkar, U.: A first principle study of pristine and BN-doped graphyne family. Struct. Chem. 25, 1695–1710 (2014). https://doi.org/10.1007/s11224-014-0440-4

    Article  Google Scholar 

  29. Zhou, J., Lv, K., Wang, Q., Chen, X.S., Sun, Q., Jena, P.: Electronic structures and bonding of graphyne sheet and its BN analog. J. Chem. Phys. 134, 174701–174706 (2011). https://doi.org/10.1063/1.3583476

    Article  Google Scholar 

  30. Long, M., Tang, L., Wang, D., Li, Y., Shuai, Z.: Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons. ACS Nano 5, 2593–2600 (2011). https://doi.org/10.1021/nn102472s

    Article  Google Scholar 

  31. Jiang, P.H., Liu, H.J., Cheng, L., Fan, D.D., Zhang, J., Wei, J., Liang, J.H., Shi, J.: Thermoelectric properties of graphyne from first-principles calculations. Carbon 113, 108–113 (2017). https://doi.org/10.1016/j.carbon.2016.11.038

    Article  Google Scholar 

  32. Majidi, R.: Electronic properties of graphyne nanotubes filled with small fullerenes: a density functional theory study. J. Comput. Electron. 15(4), 1263–1268 (2016). https://doi.org/10.1007/s10825-016-0925-z

    Article  Google Scholar 

  33. Puigdollers, A.R., Alonso, G., Gamallo, P.: First-principles study of structural, elastic and electronic properties of α-β- and γ-graphyne. Carbon 96, 879–887 (2016). https://doi.org/10.1016/j.carbon.2015.10.043

    Article  Google Scholar 

  34. Wang, X.-M., Lu, S.-S.: Thermoelectric transport in graphyne nanotubes. J. Phys. Chem. C 117(38), 19740–19745 (2013). https://doi.org/10.1021/jp406536e

    Article  Google Scholar 

  35. Srinivasu, K., Ghosh, S.K.: Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J. Phys. Chem. C 116, 5951–5956 (2012). https://doi.org/10.1021/jp212181h

    Article  Google Scholar 

  36. Zavitsas, A.A.: The relation between bond lengths and dissociation energies of carbon-carbon bonds. J. Phys. Chem. A 107, 897–898 (2003). https://doi.org/10.1021/jp0269367

    Article  Google Scholar 

  37. Coluci, V.R., Galvão, D.S., Baughman, R.H.: Theoretical investigation of electromechanical effects for graphyne carbon nanotubes. J. Chem. Phys. 121, 3228–3237 (2004). https://doi.org/10.1063/1.1772756

    Article  Google Scholar 

  38. Kang, B., Moon, J.H., Lee, J.Y.: Size dependent electronic band structures of β- and γ-graphyne nanotubes. RSC Adv. 00, 4 (2012). https://doi.org/10.1039/C5RA12188D

    Article  Google Scholar 

  39. Kang, B., Lee, J.Y.: Electronic properties of α-graphyne nanotubes. Carbon 84, 246–253 (2014). https://doi.org/10.1016/j.carbon.2014.12.002

    Article  Google Scholar 

  40. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, New York (2005). https://doi.org/10.1017/CBO9781139164313

    Book  MATH  Google Scholar 

  41. Wagner, C., Schuster, J., Gessner, T.: Empirical transport model of strained CNT transistors used for sensor applications. J. Comput. Electron. 15(3), 881–890 (2016). https://doi.org/10.1007/s10825-016-0823-4

    Article  Google Scholar 

  42. Ilatikhameneh, H., Klimeck, G., Rahman, R.: Can homojunction tunnel FETs scale below 10 nm? IEEE Electron Device Lett. 37(1), 115–118 (2016). https://doi.org/10.1109/LED.2015.2501820

    Article  Google Scholar 

Download references

Acknowledgements

Makmal Nano at University Teknologi Malaysia is appreciated for ATK software access.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Rouzkhash.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouzkhash, B., Salehi, A. & Ahmadi, M.T. Bandgap modulation of low-dimensional γ-graphyne-1 under uniform strain. J Comput Electron 19, 947–956 (2020). https://doi.org/10.1007/s10825-020-01521-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01521-6

Keywords

Navigation