Skip to main content
Log in

Nonlinear Internal Waves in Multilayer Shallow Water

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Within the framework of the second approximation of the shallow water theory, the flow of a multilayer fluid stratified in density is under study. A mathematical model for the propagation of near-bottom and near-surface large-amplitude internal waves is constructed, taking into account the influence of the fine structure of thermocline (pycnocline). Using the resulting solutions describing the propagation of solitary waves and wave bores, field data are interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. R. Helfrich and W. K. Melville, “Long Nonlinear Internal Waves,” Ann. Rev. Fluid Mech. 38, 395–425 (2006); DOI: https://doi.org/10.1146/annurev.fluid.38.050304.092129.

    Article  MathSciNet  ADS  Google Scholar 

  2. V. V. Novotryasov and M. S. Permyakov, “Experimental and Theoretical Determination of the Limiting Amplitude and Minimal Length of Solitary Waves in a Weakly Dispersed Shallow Sea,” Prikl. Mekh. Tekh. Fiz. 60 (3), 67–72 (2019) [J. Appl. Mech. Tech. Phys. 60 (3), 457–461 (2019)].

    MathSciNet  Google Scholar 

  3. A. Scotti and J. Pineda, “Observation of Very Large and Steep Internal Waves of Elevation near the Massachusetts Coast,” Geophys. Res. Lett. 31, L22307 (2004); DOI: https://doi.org/10.1029/2004GL021052.

    Article  ADS  Google Scholar 

  4. D. Bourgault, M. D. Blokhina, R. Mirshak, and D. E. Kelley, “Evolution of a Shoaling Internal Solitary Wavetrain,” Geophys. Res. Lett. 34 L03601 (2007); DOI: https://doi.org/10.1029/2006GL028462.

    Article  ADS  Google Scholar 

  5. V. F. Kukarin, V. Yu. Liapidevskii, V. V. Navrotsky, and F. F. Khrapchenkov, “Evolution of Large Amplitude Internal Waves of in a Swash Zone,” Fund. Prikl. Gidrofiz. 6 (2), 35–45 (2013).

    Google Scholar 

  6. W. Choi and R. Camassa, “Fully Nonlinear Internal Waves in a Two-Fluid System,” J. Fluid Mech. 386, 1–36 (1999); DOI: https://doi.org/10.1017/S0022112099005820.

    Article  MathSciNet  ADS  Google Scholar 

  7. V. Liapidevskii and N. Gavrilov, “Large Internal Solitary Waves in Shallow Waters,” in The Ocean in Motion: Circulation, Waves, Polar Oceanography, Ed. by M. G. Velarde, R. Yu. Tarakanov, and A. V. Marchenko (Springer Oceanography, 2018); DOI: https://doi.org/10.1007/978-3-319-71934-4J9.

  8. N. I. Makarenko, J. L. Maltseva, E. G. Morozov, et al., “Steady Internal Waves in Deep Stratified Flows,” Prikl. Mekh. Tekh. Fiz. 60 (2), 74–83 (2019) [J. Appl. Mech. Tech. Phys. 60 (2), 248–256 (2019)].

    MathSciNet  MATH  Google Scholar 

  9. W. Choi, “Modeling of Strongly Nonlinear Internal Gravity Waves,” in Proc. of the 4th Int. Conf. on Hydrodynamics, Yokohama, September 7–9, 2000, Ed. by Y. Goda, M. Ikehata, and K. Suzuki (Yokohama, 2000).

  10. N. V. Gavrilov, V. Yu. Liapidevskii, and Z. A. Liapidevskaya, “Transformation of Large Amplitude Internal Waves over a Shelf,” Fund. Prikl. Gidrofiz. 8 (3), 32–43 (2015).

    Google Scholar 

  11. V. Yu. Liapidevskii, V. V. Novotryasov, F. F. Khrapchenkov, and I. O. Yaroshchuk, “Internal Wave Bore in the Shelf Zone of the Sea,” Prikl. Mekh. Tekh. Fiz. 58 (5), 60–71 (2017) [J. Appl. Mech. Tech. Phys. 58 (5), 809–818 (2017)]; DOI: https://doi.org/10.15372/PMTF20170506.

    MathSciNet  Google Scholar 

  12. N. Gavrilov, V. Liapidevskii, and K. Gavrilova, “Large Amplitude Internal Solitary Waves over a Shelf,” Natural Hazards Earth System Sci. 11, 17–25 (2011); DOI: https://doi.org/10.5194/nhess-11-17-2011.

    Article  ADS  Google Scholar 

  13. V. V. Novotryasov, D. V. Stepanov, and I. O. Yaroshchuk, “Observations of Internal Undular Bores on the Japan/East Sea Shelf-Coastal Region,” Ocean Dyn. 66, 19–25 (2016).

    Article  ADS  Google Scholar 

  14. A. P. Leontyev, I. O. Yaroshchuk, S. V. Smirnov, et al., “A Spatially Distributed Measuring Complex for Monitoring Hydrophysical Processes on the Ocean Shelf,” Prib. Tekh. Eksp., No. 1, 128–135 (2017) [Instrum. Exp. Tech. 60 (1), 130–136 (2017)]; DOI: https://doi.org/10.7868/S0032816216060227.

  15. R.-Ch. Lien, F. Henyey, B. Ma, and Y. J. Yang, “Large-Amplitude Internal Solitary Waves Observed in the Northern South China Sea: Properties and Energetic,” J. Phys. Oceanogr. 44 (4), 1095–1115 (2014); DOI: https://doi.org/10.1175/JPO-D-13-088.1.

    Article  ADS  Google Scholar 

  16. V. F. Kukarin, V. Yu. Liapidevskii, F. F. Khrapchenkov, and I. O. Yaroshchuk, “Nonlinear Internal Waves in the Shelf Zone of the Sea,” Izv. Ross. Akad. Nauk, Mekh. Zhid. Gaza, No. 3, 38–47 (2019).

  17. V. F. Kukarin, V. Yu. Liapidevskii, F. F. Khrapchenkov, and I. O. Yaroshchuk, Fluid Dyn. 54(3), 329–338 (2019) https://doi.org/10.1134/S001546281903008X.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Liapidevskii.

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 61, No. 1, pp. 53–62, January–February, 2020.

Original Russian Text © V.Yu. Liapidevskii, M.V. Turbin, F.F. Khrapchenkov, V.F. Kukarin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liapidevskii, V.Y., Turbin, M.V., Khrapchenkov, F.F. et al. Nonlinear Internal Waves in Multilayer Shallow Water. J Appl Mech Tech Phy 61, 45–53 (2020). https://doi.org/10.1134/S0021894420010058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894420010058

Keywords

Navigation