Skip to main content
Log in

Numerical Investigation on the Effects of the Deposit Height and Position on the Film Cooling Efficiency

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The main objective of this study is to analyze the effect of the solid deposits downstream of the injection hole on the film cooling efficiency by highlighting the impact of several geometrical and physical parameters, such as the blowing ratio, deposit position, and deposit height, by using the ANSYS CFX software. Several configurations are tested by changing the deposit position and deposit height. The turbulence is approximated by the shear stress transport (SST) model. The film cooling effectiveness distributions are presented for different blowing ratios. The numerical results are compared with available experimental data, and good agreement is noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. D. Ammari, N. Hay, and D. Lampard, “The Effect of Density Ratio on the Heat Transfer Coefficient from a Film Cooled Flat Plate,” ASME J. Turbomachinery 112, 444–450 (1990); DOI: https://doi.org/10.1115/1.2927679.

    Article  Google Scholar 

  2. A. K. Sinha, D. G. Bogard, and M. E. Crawford, “Film-Cooling Effectiveness Downstream of a Single Row of Holes with Variable Density Ratio,” ASME J. Turbomachinery 113, 442–449 (1991); DOI: https://doi.org/10.1115/1.2927894.

    Article  Google Scholar 

  3. U. Drost and A. Bölcs, “Investigation of Detailed Film Cooling Effectiveness and Heat Transfer Distributions on a Gas Turbine Airfoil,” ASME J. Turbomachinery 121, 233–242 (1999); DOI: https://doi.org/10.1115/1.2841306.

    Article  Google Scholar 

  4. C. L. Liu, H. R. Zhu, Z. W. Zhang, and D. C. Xu, “Experimental Investigation on the Leading Edge Film Cooling of Cylindrical and Laid-Back Holes with Different Hole Pitches,” Int. J. Heat Mass Transfer. 55, 6832–6845 (2012); DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.090.

    Article  Google Scholar 

  5. A. Khorsi, A. Guelailia, and M. K. Hamidou, “Improvement of Film Cooling Effectiveness with a Small Downstream Block Body,” Prikl. Mekh. Tekh. Fiz. 57 (4), 107–113 (2016) [J. Appl. Mech. Tech. Phys. 57 (4), 666–671 (2016)].

    Google Scholar 

  6. K. Tian, J. Wang, C. Zhanxiu, and A. Guelailia, “Effect of Hole Blockage Configurations on Film Cooling in Gas Turbine Components,” Chem. Eng. Trans. 61, 229–234 (2017); DOI: https://doi.org/10.3303/CET1761036.

    Google Scholar 

  7. A. Guelailia, A. Khorsi, and M. K. Hamidou, “Computation of Leading Edge Film Cooling from a Console Geometry (Converging Slot Hole),” Thermophys. Aeromech. 23 (1), 33–42 (2016); DOI: https://doi.org/10.1134/S0869864316010042.

    Article  ADS  Google Scholar 

  8. J. E. Sargison, S. M. Guo, M. L. G. Oldfield, et al., “A Converging Slot-Hole Film-Cooling Geometry. Pt 2. Transonic Nozzle Guide Vane Heat Transfer and Loss,” ASME J. Turbomachinery 124, 461–471 (2002).

    Article  Google Scholar 

  9. R. J. Goldstein, E. R. G. Eckert, H. D. Chiang, and E. Elovic, “Effect of Surface Roughness on Film Cooling Performance,” ASME J. Eng. Gas Turbines Power 107, 111–116 (1985); DOI: https://doi.org/10.1115/1.3239669.

    Article  Google Scholar 

  10. D. L. Schmidt and D. G. Bogard, “Effects of Free-Stream Turbulence and Surface Roughness on Film Cooling,” ASME Paper No. 96-GT-462 (1996).

  11. D. L. Schmidt, B. Sen, and D. G. Bogard, “Effects of Surface Roughness on Film Cooling,” ASME Paper No. 96-GT-299 (1996). DOI: 10.1115/96-GT-299.

  12. C. H. N. Yuen and R. F. Martinez-Botas, “Film Cooling Characteristics of a Single Round Hole at Various Streamwise Angles in a Crossflow. Pt 1. Effectiveness,” Int. J. Heat Mass Transfer 46, 221–235 (2003).

    Article  Google Scholar 

  13. C. H. N. Yuen and R. F. Martinez-Botas, “Film Cooling Characteristics of a Single Round Hole at Various Streamwise Angles in a Crossflow. Pt 2. Heat Transfer Coefficients,” Int. J. Heat Mass Transfer 46, 237–249 (2003).

    Article  Google Scholar 

  14. C. H. N. Yuen and R. F. Martinez-Botas, “Film Cooling Characteristics of Rows of Round Holes at Various Streamwise Angles in a Crossflow. Pt 1. Effectiveness,” Int. J. Heat Mass Transfer 48, 4995–5016 (2005).

    Article  Google Scholar 

  15. C. H. N. Yuen and R. F. Martinez-Botas, “Film Cooling Characteristics of Rows of Round Holes at Various Streamwise Angles in a Crossflow. Pt 2. Heat Transfer Coefficients,” Int. J. Heat Mass Transfer 48, 5017–5035 (2005).

    Article  Google Scholar 

  16. A. Guelailia, A. Khorsi, and A. M. Boudjemai, “Thermal Protection of Rocket Nozzle by Using Film Cooling Technology—Effect of Lateral Curvature,” Int. J. Heat Technol. 36, 1070–1074 (2018).

    Article  Google Scholar 

  17. N. Sundaram and K. A. Thole, “Effects of Surface Deposition, Hole Blockage, and Thermal Barrier Coating Spallation on Vane Endwall Film Cooling,” J. Turbomachinery 129, 599–607 (2007).

    Article  Google Scholar 

  18. J. Wang, P. Cui, M. Vujanovic, et al., “Effects of Surface Deposition and Droplet Injection on Film Cooling,” Energy Convers. Manag. 125, 51–58 (2016).

    Article  Google Scholar 

  19. H. Nasir, S. V. Ekkad, and S. Acharya, “Effect of Compound Angle Injection on Flat Surface Film Cooling with Large Streamwise Injection Angle,” Exp. Thermal Fluid Sci. 25 (1/2), 23–29 (2001).

    Article  Google Scholar 

  20. F. R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA J. 32 (8), 1598–1605 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guelailia.

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 61, No. 1, pp. 82–90, January–February, 2020.

Original Russian Text © A. Guelailia, A. Khorsi, S.A. Slimane, M.M. Bencherif, K. Gourssma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guelailia, A., Khorsi, A., Slimane, S.A. et al. Numerical Investigation on the Effects of the Deposit Height and Position on the Film Cooling Efficiency. J Appl Mech Tech Phy 61, 70–77 (2020). https://doi.org/10.1134/S0021894420010083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894420010083

Keywords

Navigation