Skip to main content
Log in

Two-Neutron Correlations in a Borromean \(\varvec{^{20}\mathrm{C}+n+n}\) System: Sensitivity of Unbound Subsystems

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The structure of \(^{22}\)C plays a vital role in the new physics at subshell closure of \(N=16\) in the neutron-rich region. We study the two-neutron correlations in the ground state of the weakly-bound Borromean nucleus \(^{22}\)C sitting at the edge of the neutron-drip line and its sensitivity to \(\mathrm{core}\)-n potential. For the present study, we employ a three-body (\(\mathrm{core}+n+n\)) structure model designed for describing the Borromean system by explicit coupling of unbound continuum states of the subsystem (\(\mathrm{core}+n\)). We use a density-independent contact-delta interaction to describe the neutron-neutron interaction and its strength is varied to fix the binding energy. Along with the ground-state properties of \(^{22}\)C, we investigate its electric-dipole and monopole responses, discussing the contribution of various configurations. Our results indicate more configuration mixing as compared to the previous studies in the ground state of \(^{22}\)C. However, they strongly depend upon the choice of the \(^{20}\mathrm{C}\)-n potential as well as the binding energy of \(^{22}\)C, which call for new precise measurements for the low-lying continuum structure of the binary system (\(^{20}\mathrm{C}+n\)) and the mass of \(^{22}\)C. These measurements will be essential to understand the Borromean three-body system \(^{22}\)C with more accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa et al., Phys. Rev. Lett. 55, 2676 (1985)

    Article  ADS  Google Scholar 

  2. M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson et al., Phys. Rep. 231, 151–199 (1993)

    Article  ADS  Google Scholar 

  3. A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, I. Tanihata, Phys. Rev. Lett. 84, 5493 (2000)

    Article  ADS  Google Scholar 

  4. N. Kobayashi, T. Nakamura, J.A. Tostevin, Y. Kondo, N. Aoi et al., Phys. Rev. C 86, 054604 (2012)

    Article  ADS  Google Scholar 

  5. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  6. L. Gaudefroy, W. Mittig, N.A. Orr, S. Varet, M. Chartier et al., Phys. Rev. Lett. 109, 202503 (2012)

    Article  ADS  Google Scholar 

  7. K. Yoneda, N. Aoi, H. Iwasaki, H. Sakurai, H. Ogawa et al., Phys. Rev. C 67, 014316 (2003)

    Article  ADS  Google Scholar 

  8. K. Tanaka, T. Yamaguchi, T. Suzuki, T. Ohtsubo, M. Fukuda et al., Phys. Rev. Lett. 104, 062701 (2010)

    Article  ADS  Google Scholar 

  9. Y. Togano, T. Nakamura, Y. Kondo, J.A. Tostevin, A.T. Saito et al., Phys. Lett. B 761, 412–418 (2016)

    Article  ADS  Google Scholar 

  10. T. Nagahisa, W. Horiuchi, Phys. Rev. C 97, 054614 (2018)

    Article  ADS  Google Scholar 

  11. W. Horiuchi, Y. Suzuki, Phys. Rev. C 74, 034311 (2006)

    Article  ADS  Google Scholar 

  12. W. Horiuchi, Y. Suzuki, B. Abu-Ibrahim, A. Kohama, Phys. Rev. C 75, 044607 (2007)

    Article  ADS  Google Scholar 

  13. B. Abu-Ibrahim, W. Horiuchi, A. Kohama, Y. Suzuki, Phys. Rev. C 77, 034607 (2008)

    Article  ADS  Google Scholar 

  14. M.T. Yamashita, R.S. Marques de Carvalho, T. Frederico, Lauro Tomio, Phys. Lett. B 697, 90 (2011)

    Article  ADS  Google Scholar 

  15. M.T. Yamashita, R.S. Marques de Carvalho, T. Frederico, Lauro Tomio, Phys. Lett. B 715, 282(E) (2012)

  16. H.T. Fortune, R. Sherr, Phys. Rev. C 85, 027303 (2012)

    Article  ADS  Google Scholar 

  17. S.N. Ershov, J.S. Vaagen, M.V. Zhukov, Phys. Rev. C 86, 034331 (2012)

    Article  ADS  Google Scholar 

  18. B. Acharya, C. Ji, D.R. Phillips, Phys. Lett. B 723, 196 (2013)

    Article  ADS  Google Scholar 

  19. K. Ogata, T. Myo, T. Furumoto, T. Matsumoto, M. Yahiro, Phys. Rev. C 88, 024616 (2013)

    Article  ADS  Google Scholar 

  20. T. Inakura, W. Horiuchi, Y. Suzuki, T. Nakatsukasa, Phys. Rev. C 89, 064316 (2014)

    Article  ADS  Google Scholar 

  21. Y. Kucuk, J.A. Tostevin, Phys. Rev. C 89, 034607 (2014)

    Article  ADS  Google Scholar 

  22. T. Suzuki, T. Otsuka, C. Yuan, N. Alahari, Phys. Lett. B 753, 199 (2016)

    Article  ADS  Google Scholar 

  23. L.A. Souza, E. Garrido, T. Frederico, Phys. Rev. C 94, 064002 (2016)

    Article  ADS  Google Scholar 

  24. H.T. Fortune, Phys. Rev. C 94, 064307 (2016)

    Article  ADS  Google Scholar 

  25. E.C. Pinilla, P. Descouvemont, Phys. Rev. C 94, 24620 (2016)

    Article  ADS  Google Scholar 

  26. N.B. Shulgina, S.N. Ershov, J.S. Vaagen, M.V. Zhukov, Phys. Rev. C 97, 064307 (2018)

    Article  ADS  Google Scholar 

  27. A.B. Migdal, Sov. J. Nucl. Phys. 16, 238 (1973)

    Google Scholar 

  28. S. Mosby, N.S. Badger, T. Baumann, D. Bazin, M. Bennett et al., Nucl. Phys. A 909, 69 (2013)

    Article  ADS  Google Scholar 

  29. L. Fortunato, R. Chatterjee, J. Singh, A. Vitturi, Phys. Rev. C 90, 064301 (2014)

    Article  ADS  Google Scholar 

  30. J. Singh, L. Fortunato, A. Vitturi, R. Chatterjee, Eur. Phys. J. A 52, 209 (2016)

    Article  ADS  Google Scholar 

  31. J. Singh, Ph.D. thesis, University of Padova, Italy (2016), http://paduaresearch.cab.unipd.it/9278/

  32. J. Singh, L. Fortunato, Acta Physica Polonica B 47, 1001 (2016)

    Article  Google Scholar 

  33. N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G.H. Rawitscher, M. Yahiro, Phys. Rep. 154, 125 (1987)

    Article  ADS  Google Scholar 

  34. R.A.D. Piyadasa, M. Kawai, M. Kamimura, M. Yahiro, Phys. Rev. C 60, 044611 (1999)

    Article  ADS  Google Scholar 

  35. H. Esbensen, G.F. Bertsch, K. Hencken, Phys. Rev. C 56, 3054 (1997)

    Article  ADS  Google Scholar 

  36. A. Vitturi, F. Pérez-Bernal, Nucl. Phys. A 834, 428c (2010)

    Article  ADS  Google Scholar 

  37. K. Hagino, A. Vitturi, F. Pérez-Bernal, H. Sagawa, J. Phys. G Nucl. Part. Phys. 38, 015105 (2011)

    Article  ADS  Google Scholar 

  38. A. Ozawa, O. Bochkarev, L. Chulkov, D. Cortina, H. Geissel et al., Nucl. Phys. A 691, 599 (2001)

    Article  ADS  Google Scholar 

  39. X.X. Sun, J. Zhao, S.G. Zhou, Phys. Lett. B 785, 530–535 (2018)

    Article  ADS  Google Scholar 

  40. G.F. Bertsch, H. Esbensen, Ann. Phys. (N.Y.) 209, 327 (1991)

    Article  ADS  Google Scholar 

  41. K. Hagino, H. Sagawa, Phys. Rev. C 72, 044321 (2005)

    Article  ADS  Google Scholar 

  42. W. Horiuchi, Y. Suzuki, Phys. Rev. C 73, 037304 (2006)

    Article  ADS  Google Scholar 

  43. W. Horiuchi, Y. Suzuki, Phys. Rev. C 74, 019901(E) (2006)

    Article  ADS  Google Scholar 

  44. H. Esbensen, G.F. Bertsch, Nucl. Phys. A 542, 310 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank P. Descouvemont and J. A. Lay for useful discussions. J. Singh gratefully acknowledged the financial support from Nuclear Reaction Data Centre (JCPRG), Faculty of science, Hokkaido University, Sapporo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagjit Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was in part supported by JSPS KAKENHI Grant Numbers 18K03635, 18H04569 and 19H05140, and the collaborative research program 2019, information initiative center, Hokkaido University.

Appendix—Convergence with Model Parameters

Appendix—Convergence with Model Parameters

Fig. 6
figure 6

(Color online) a Convergence with continuum energy cut \(E_{\mathrm{\,cut}}\) of the model space and b Convergence with energy spacing \(\varDelta {E}\) of the model space

We calculate the continuum single-particle wave functions for different \(E_{\mathrm{\,cut}}\)’s. After fixing the convergence with \(E_{\mathrm{\,cut}}\), the continuum single-particle wave functions, using the mid-point method for \(E_{\mathrm{\,cut}}=5\) MeV, with \(\varDelta {E}=1.0\), 0.5, 0.2, 0.1, 0.08, 0.06 and 0.05 MeV, the two-particle states are formed and the matrix elements of the pairing interaction are calculated. The convergence of the results is discussed on two different levels:

  1. 1.

    Convergence with the continuum energy cut (\(E_{\mathrm{\,cut}}\)) of the model space

    We check the convergence of our results (dominant contribution in the ground state of \(^{22}\)C) with different \(E_{\mathrm{\,cut}}\)’s. In the Fig. 6a, we show the variation of three dominant contributions (\(s_{1/2}\), \(d_{3/2}\) and \(f_{7/2}\)) in the ground state of \(^{22}\)C with different \(E_{\mathrm{\,cut}}\)’s for different values of the energy spacing (\(\varDelta {E}\)). One can clearly see that we achieve the convergence with different \(E_{\mathrm{\,cut}}\)’s but still there is significant variation in the percentage contribution with different \(\varDelta {E}\)s. In the fourth quadrant of the Fig. 6a, due to huge computational costs, we restrict ourselves to only 10 MeV. It is convincing that one can choose fairly well the \(E_{\mathrm{\,cut}}=5\) MeV for this study and we will do all the calculations with \(E_{\mathrm{\,cut}}=5\) MeV.

  2. 2.

    Convergence with the energy spacing (\(\varDelta {E}\)) of the model space

    As seen from the Fig. 6b, we study the convergence of our results (dominant contribution in the ground state of \(^{22}\)C) with inverse of \(\varDelta {E}\) for \(E_{\mathrm{\,cut}}=5\) MeV. It is clear from the Fig. 6b, the curves start getting flat from \(\varDelta {E}=0.1\) MeV. Therefore, we adopt \(\varDelta {E}=0.1\) MeV (\(1/\varDelta {E}=10\) MeV) for the present calculations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Horiuchi, W., Fortunato, L. et al. Two-Neutron Correlations in a Borromean \(\varvec{^{20}\mathrm{C}+n+n}\) System: Sensitivity of Unbound Subsystems. Few-Body Syst 60, 50 (2019). https://doi.org/10.1007/s00601-019-1518-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-019-1518-8

Navigation