Skip to main content
Log in

Trigonometric Rosen–Morse Potential as a Quark–Antiquark Interaction Potential for Meson Properties in the Non-relativistic Quark Model Using EAIM

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Trigonometric Rosen–Morse potential is suggested as a quark–antiquark interaction potential for studying thermodynamic properties and masses of heavy and heavy–light mesons. For this purpose, the N-radial Schrödinger equation is analytically solved using an exact-analytical iteration method. The energy eigenvalues and corresponding wave functions are obtained in the N-space. The present results are applied in calculating the mass of mesons such as charmonium c \({\bar{\hbox {c}}}\), bottomonium b \({\bar{\hbox {b}}}\), b \( {\bar{\hbox {c}}}, \) and c \({\bar{\hbox {s}}}\) mesons and thermodynamic properties such as the mean internal energy, the specific heat, the free energy, and the entropy. The effect of dimensional number is studied on the meson properties. The present results are improved in comparison with other recent works and are in good agreement in comparison with experimental data. Thus, the present potential provides satisfied results in comparison with other works and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.N. Ikot, B.C. Lutfuoglu, M.I. Ngwueke, M.E. Udoh, S. Zare, H. Hassan, Eur. Phys. J. Plus 131, 419 (2016)

    Article  Google Scholar 

  2. M. Abu-Shady, T.A. Abdel-Karim, S.Y. Ezz-Alarab, J. Egypt. Math. Soc. 27, 14 (2019)

    Google Scholar 

  3. A. Suparmi, C. Cari, A.S. Husein, H. Yulian, I.K.A. Khaled, H. Luqman, E. Supriyanto, in 4th International Conference on Advanced Nuclear Science Engineering, vol. 1615, pp. 121–127 (2014)

  4. H. Ciftci, R.L. Hall, N. Saad, J. Phys. A 38, 1147 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  5. F.M. Fernández, J. Phys. A 37, 6173 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  6. T. Barak, K. Abod, O.M. Al-Doss, Czechov. J. Phys. 56, 6 (2006)

    Google Scholar 

  7. A. Arda, C. Tezcan, R. Sever, Few Body Syst. 57, 101 (2016)

    Article  ADS  Google Scholar 

  8. C.B.C. Jasso, M. Kirchbach, A.I.P. Conf, AIP Conf. Proc. 857, 275–278 (2006)

    Article  ADS  Google Scholar 

  9. C.B.C. Jasso, M. Kirchbach, J. Phys. A Math. Gen. 39, 547 (2006)

    Article  Google Scholar 

  10. S. Sharma, Hindawi Publ. Corp. 452978, 26 (2013)

    Google Scholar 

  11. C.V. Sukumar, J. Phys. A Math. Gen. 18, 2917 (1998); AIP Proceedings 744, eds. R. Bijker et al, Supersymmetries in Physics and Applications, 167 (New York, 2005)

  12. F. Cooper, A. Khare, U.P. Sukhat, Super Symmetry Quantum Mechanics (World Scientific, Singapore, 2001)

    Book  Google Scholar 

  13. M. Abu-Shady, T.A. Abdel-Karim, E.M. Khokha, Adv. High Energy Phys. 2018, 7356843 (2018)

    Google Scholar 

  14. M. Abu-Shady, T.A. Abdel-Karim, E.M. Khokha, SF J. Quantum Phys. 2, 1000017 (2018)

    Google Scholar 

  15. M. Abu-Shady, E.M. Khokha, Adv. High Energy Phys. 2018, 7032041 (2018)

    Google Scholar 

  16. M. Tanabashi et al., Phys. Rev. D 98, 030001 (2018)

    Article  ADS  Google Scholar 

  17. R. Kumar, F. Chand, Commun. Theor. Phys. 59, 528 (2013)

    Article  Google Scholar 

  18. A. Al-Jamel, H. Widyan, Appl. Phys. Res. 4, 94 (2013)

    Google Scholar 

  19. N.V. Masksimenko, S.M. Kuchin, Russ. Phys. J. 54, 57 (2011)

    Article  Google Scholar 

  20. R. Kumar, F. Chand, Phys. Scr. 85, 055008 (2012)

    Article  ADS  Google Scholar 

  21. S.M. Kuchin, N.V. Maksimenko, Univ. J. Phys. Appl. 7, 295 (2013)

    Google Scholar 

  22. A. Kumar Ray, P.C. Vinodkumar, Pramana J. Phys. 66, 958 (2006)

    Google Scholar 

  23. E.J. Eichten, C. Quigg, Phys. Rev. D 49, 5845 (1994)

    Article  ADS  Google Scholar 

  24. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 67, 014027 (2003)

    Article  ADS  Google Scholar 

  25. Z. Ghalenovi, A.A. Rajabi, S. Qin, H. Rischke. arXiv:hep-ph/14034582 (2014)

  26. C. Patrignani et al., Chin. Phys. C 40, article 100001 (2016)

  27. T. Das, EJTP 13, 207 (2016)

    Google Scholar 

  28. W. Shi-Hal, M. Loz-cass, J.F. Jim-Ngm, A.L. River, Int. J. Quant. Chem. 107, 366–371 (2007)

    Article  ADS  Google Scholar 

  29. H. Hassan, M. Hosseinp, Eur. Phys. J. C 76, 553 (2016)

    Article  ADS  Google Scholar 

  30. M.H. Pach , R.V. Maluf, C.A.S. Almeid , R.R. Land. arXiv:1406.5114v2 (2014)

  31. E. Meg, E. Ruiz, L.L. Salced. arXiv:1603.04642v3 (2016)

  32. J. Beringer et al., Phys. Rev. D 86, 1 (2012)

    Article  Google Scholar 

  33. W.A. Yah, K.J. Oyew, J. Assoc. Arab. Univ. Basic Appl. Sci. 21, 53 (2016)

    Google Scholar 

  34. M.C. Onyeaj, A.N. Ikot, C.A. Onate, O. Ebomw, M.E. Udoh, J.O.A. Idiod, Eur. Phys. J. Plus. 132, 302 (2017)

    Article  Google Scholar 

  35. S. Roy, D.K. Choudhury, Can. J. Phys. 94, 1282 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abu-Shady.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this appendix, thermodynamics properties of the Trigonometric Rosen–Morse potential are studied, the partition function is given \(\hbox {Z}=\mathop \sum \nolimits _{n=0}^\infty e^{-\beta E}\), where \(\upbeta = \frac{1}{K T}\), K is the Boltzmann constant as in Ref. [1]

1.1 Partition function

$$\begin{aligned} \hbox {Z}\left( {\upbeta } \right) = \mathop \sum \limits _{n=0}^\infty e^{-\beta E_{nl}}, \end{aligned}$$
(A1)

by substituting Eq. (28), we obtain

$$\begin{aligned} \hbox {Z}\left( {\upbeta } \right) =\frac{e^{-\beta \left( \hbox {C}_{1}+\hbox {C}_{2}-\hbox {C}_{3} \right) }}{\left( 1-e^{-\beta \hbox {C}_{1}} \right) }, \end{aligned}$$
(A2)

where,

$$\begin{aligned} \hbox {C}_{1} \quad =\frac{1}{\mu }\sqrt{\frac{a(a+1)}{15d^{4}}},\quad \hbox {C}_{2}=\frac{l^{'}}{2\mu }\sqrt{\frac{a(a+1)}{15d^{4}} },\quad {\hbox { C}}_{3}= \frac{5}{6\mu }\frac{b^{2}}{a(a+1)d^{2}},\quad l^{'}= \sqrt{{8 \upmu \hbox {C+4}\left( \hbox {L+}\frac{N\hbox {-2}}{\hbox {2}} \right) ^{\mathrm{2}}}}.\nonumber \\ \end{aligned}$$
(A3)

1.2 Mean energy U

$$\begin{aligned} \hbox {U}\left( {\upbeta } \right)= & {} -\,\frac{\hbox {d}}{{\hbox {d}}\upbeta }\hbox {LnZ}\left( {\upbeta } \right) , \end{aligned}$$
(A4)
$$\begin{aligned} U\left( \beta \right)= & {} -\,e^{\beta \left( C_{1}+C_{2}-C_{3} \right) }\left( 1-e^{-\beta C_{1}} \right) \left( -\frac{e^{-\beta C_{1}-\beta \left( C_{1}+C_{2}-C_{3} \right) }C_{1}}{\left( 1-e^{-\beta C_{1}} \right) ^{2}}+\frac{e^{-\beta \left( C_{1}+C_{2}-C_{3} \right) }\left( -C_{1}-C_{2}+C_{3} \right) }{1-e^{-\beta C_{1}}} \right) .\nonumber \\ \end{aligned}$$
(A5)

1.3 Specific heat C

$$\begin{aligned} C(\beta )= & {} \frac{dU}{dT} = -\, \hbox {K} \beta ^{2} \frac{dU}{d\beta }, \end{aligned}$$
(A6)
$$\begin{aligned} C\left( \beta \right)= & {} -\,K\beta ^{2}\left( -\,e^{-\beta C_{1}+\beta \left( C_{1}+C_{2}-C_{3} \right) }C_{1}\left( -\frac{e^{-\beta C_{1}-\beta \left( C_{1}+C_{2}-C_{3} \right) }C_{1}}{\left( 1-e^{-\beta C_{1}} \right) ^{2}}\right. \right. \nonumber \\&\left. \left. +\,\frac{e^{-\beta \left( C_{1}+C_{2}-C_{3} \right) }\left( -C_{1}-C_{2}+C_{3} \right) }{1-e^{-\beta C_{1}}}\right) \right. \nonumber \\&\left. -\,e^{\beta \left( C_{1}+C_{2}-C_{3} \right) }(1-e^{-\beta C_{1}})(C_{1}+C_{2}-C_{3})\left( -\frac{e^{-\beta C_{1}-\beta \left( C_{1}+C_{2}-C_{3} \right) }C_{1}}{\left( 1-e^{-\beta C_{1}} \right) ^{2}}\right. \right. \nonumber \\&\left. +\,\frac{e^{-\beta \left( C_{1}+C_{2}-C_{3} \right) }\left( -C_{1}-C_{2}+C_{3} \right) }{1-e^{-\beta C_{1}}}\right) \nonumber \\&-\,e^{\beta \left( C_{1}+C_{2}-C_{3} \right) }(1-e^{-\beta C_{1}})\left( \frac{2e^{-2\beta C_{1}-\beta \left( C_{1}+C_{2}-C_{3} \right) }C_{1}^{2}}{\left( 1-e^{-\beta C_{1}} \right) ^{3}}\right. \nonumber \\&-\,\frac{e^{-\beta C_{1}-\beta \left( C_{1}+C_{2}-C_{3} \right) }C_{1}\left( -2C_{1}-C_{2}+C_{3} \right) }{\left( 1-e^{-\beta C_{1}} \right) ^{2}}-\frac{e^{-\beta C_{1}-\beta \left( C_{1}+C_{2}-C_{3} \right) }C_{1}\left( -C_{1}-C_{2}+C_{3} \right) }{\left( 1-e^{-\beta C_{1}} \right) ^{2}}\nonumber \\&\left. \left. +\,\frac{e^{-\beta \left( C_{1}+C_{2}-C_{3} \right) }\left( -C_{1}-C_{2}+C_{3} \right) ^{2}}{1-e^{-\beta C_{1}}}\right) \right) , \end{aligned}$$
(A7)

1.4 Free energy

$$\begin{aligned} \hbox {F}(\upbeta )= & {} -\,\hbox {KT }\,\hbox {LnZ}(\upbeta ), \nonumber \\ \hbox {F}\left( {\upbeta } \right)= & {} -\,\frac{\hbox {Log}\left[ \frac{e^{-\beta (C_{1}+C_{2}-C_{3})}}{(1-e^{-\beta C_{1}})}\right] }{\beta } \end{aligned}$$
(A8)

1.5 Entropy

$$\begin{aligned} \hbox {S}(\upbeta )= & {} \hbox {K}\,\hbox {ln}\,\hbox {Z}(\upbeta ) -\hbox {K}\,{ \upbeta } \frac{\partial }{\partial {\upbeta }} \hbox {ln}{\hbox {Z}(\upbeta )}, \nonumber \\ \hbox {S}\left( {\upbeta }\right)= & {} \hbox {K}\,\hbox {Log}\left[ \frac{\hbox {e}^{{-\upbeta }\left( \hbox {C}_{\mathrm{1}}+\hbox {C}_{\mathrm{2}}-\hbox {C}_{\mathrm{3}} \right) }}{\hbox {1}-\hbox {e}^{{-\upbeta }\hbox {C}_{\mathrm{1}}}}\right] \nonumber \\&-\,\hbox {e}^{{\upbeta }\left( \hbox {C}_{\mathrm{1}}+\hbox {C}_{\mathrm{2}}-\hbox {C}_{\mathrm{3}} \right) }\hbox {(1}-\hbox {e}^{{-\upbeta }\hbox {C}_{\mathrm{1}}})\hbox {K}\upbeta \nonumber \\&\left( \,-\frac{\hbox {e}^{{-\upbeta }\hbox {C}_{\mathrm{1}}{-\upbeta }\left( \hbox {C}_{\mathrm{1}}+\hbox {C}_{\mathrm{2}}-\hbox {C}_{\mathrm{3}} \right) }\hbox {C}_{\mathrm{1}}}{\left( \hbox {1}-\hbox {e}^{{-\upbeta }\hbox {C}_{\mathrm{1}}} \right) ^{\mathrm{2}}}+\frac{\hbox {e}^{{-\upbeta }\left( \hbox {C}_{\mathrm{1}}+\hbox {C}_{\mathrm{2}}-\hbox {C}_{\mathrm{3}} \right) }\left( -\,\hbox {C}_{\mathrm{1}}-\hbox {C}_{\mathrm{2}}+\hbox {C}_{\mathrm{3}} \right) }{\hbox {1}-\hbox {e}^{{-\upbeta }\hbox {C}_{\mathrm{1}}}}\right) . \end{aligned}$$
(A9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Shady, M., Ezz-Alarab, S.Y. Trigonometric Rosen–Morse Potential as a Quark–Antiquark Interaction Potential for Meson Properties in the Non-relativistic Quark Model Using EAIM. Few-Body Syst 60, 66 (2019). https://doi.org/10.1007/s00601-019-1531-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-019-1531-y

Navigation