Skip to main content
Log in

Momentum-Space Probability Density of \({}^6\)He in Halo Effective Field Theory

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We compute the momentum-space probability density of \({}^6\)He at leading order in Halo EFT. In this framework, the \({}^6\)He nucleus is treated as a three-body problem with a \({}^4\)He core (\(c\)) and two valence neutrons (\(n\)). This requires the \(nn\) and \(n c\) t-matrices as well as a \(cnn\) force as input in the Faddeev equations. Since the \(n c\) t-matrix corresponds to an energy-dependent potential, we consider the consequent modifications to the standard normalization and orthogonality conditions. We find that these are small for momenta within the domain of validity of Halo EFT. In this regime, the \({}^6\)He probability density is regulator independent, provided the cutoff is significantly above the EFT breakdown scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. This result for the probability density can also be derived without invoking a density matrix if we instead compute the expectation value in the \({}^6\)He ground state of the modified momentum-space projector (51) using the modified scalar product of [30].

  2. Note that we abbreviate the spin states in the following way:

    $$\begin{aligned} \left| {L, -M}\right\rangle _{n}^{}&= \left| {\left( \frac{1}{2}, 0\right) \frac{1}{2},\frac{1}{2}; L, -M}\right\rangle _{n}^{} , \\ \left| {0, 0}\right\rangle _{c}^{}&= \left| {\left( \frac{1}{2}, \frac{1}{2}\right) 0,0; 0, 0}\right\rangle _{c}^{} , \end{aligned}$$

    where the notation \(\left| {\left( \nu _j,\nu _k\right) s_i, \sigma _i; S, M_S}\right\rangle _{i}^{} \) from [15] is used.

  3. We put it in quotation marks, since it is actually only an approximation for the potential energy density. The potential energy density of \(V_i\) is defined as \(P_{\varvec{p},\varvec{q}} V_i\), where \(P_{\varvec{p},\varvec{q}}\) projects on the Jacobi momenta, \(\varvec{p}\) and \(\varvec{q}\). The formula above represents the expectation value of this product of operators in the case of potentials which are not energy dependent. Otherwise, correction terms exist.

  4. We define the following measure for the numerical uncertainty:

    $$\begin{aligned} \frac{ \max _{i,j}{\left( \left| \rho _{ij}^{\left( 2n\right) } - \rho _{ij}^{\left( n\right) } \right| \right) } }{ \max _{i,j}{\left( \left| \rho _{ij}^{\left( 2n\right) } \right| \right) }/2 } , \end{aligned}$$

    where the \(\rho _{ij}\) is the probability density evaluated on a grid. We put a number proportional to the number of mesh points for the discretization of both the integral equations and the angular integration in the brackets in the superscript of the \(\rho _{ij}\). These two numerical techniques—as well as others—generally use different numbers of mesh points, but the common proportionality factor enables us to change the overall precision. Accordingly this measure is the maximum absolute difference of the result with fixed numbers of mesh points and the result obtained with twice as many mesh points, divided by a “typical” density value. For the latter we choose the half of the maximum of the absolute values.

  5. Note that we make a small error by using the analytic results for the \(\lambda _i\) as given in Sect. 2.2, since in these calculations the three-body cutoff \(\varLambda \) is neglected.

References

  1. S. Ulrych, H. Müther, Nucl. Phys. A 641, 499 (1998). https://doi.org/10.1016/S0375-9474(98)00537-5

    Article  ADS  Google Scholar 

  2. I. Yaron, J. Alster, L. Frankfurt, E. Piasetzky, M. Sargsian, M. Strikman, Phys. Rev. C 66, 024601 (2002). https://doi.org/10.1103/PhysRevC.66.024601

    Article  ADS  Google Scholar 

  3. O. Benhar, D. Day, I. Sick, Rev. Mod. Phys. 80, 189 (2008). https://doi.org/10.1103/RevModPhys.80.189

    Article  ADS  Google Scholar 

  4. R. Haag, Phys. Rev. 112, 669 (1958). https://doi.org/10.1103/PhysRev.112.669

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Kamefuchi, L. O’Raifeartaigh, A. Salam, Nucl. Phys. 28, 529 (1961). https://doi.org/10.1016/0029-5582(61)91075-6

    Article  Google Scholar 

  6. J.S.R. Chisholm, Nucl. Phys. 26(3), 469 (1961). https://doi.org/10.1016/0029-5582(61)90106-7

    Article  Google Scholar 

  7. R.J. Furnstahl, H.W. Hammer, Phys. Lett. B 531, 203 (2002). https://doi.org/10.1016/S0370-2693(01)01504-0

    Article  ADS  Google Scholar 

  8. S.N. More, S.K. Bogner, R.J. Furnstahl, Phys. Rev. C 96(5), 054004 (2017). https://doi.org/10.1103/PhysRevC.96.054004

    Article  ADS  Google Scholar 

  9. A.S. Jensen, K. Riisager, D.V. Fedorov, E. Garrido, Rev. Mod. Phys. 76, 215 (2004). https://doi.org/10.1103/RevModPhys.76.215

    Article  ADS  Google Scholar 

  10. E. Braaten, H.W. Hammer, Phys. Rep. 428, 259 (2006). https://doi.org/10.1016/j.physrep.2006.03.001

    Article  MathSciNet  ADS  Google Scholar 

  11. C. Bertulani, H.W. Hammer, U. van Kolck, Nucl. Phys. A 712(1), 37 (2002). https://doi.org/10.1016/S0375-9474(02)01270-8

    Article  ADS  Google Scholar 

  12. P. Bedaque, H.W. Hammer, U. van Kolck, Phys. Lett. B 569(3), 159 (2003). https://doi.org/10.1016/j.physletb.2003.07.049

    Article  ADS  Google Scholar 

  13. H.W. Hammer, C. Ji, D.R. Phillips, J. Phys. G44(10), 103002 (2017)

    Article  ADS  Google Scholar 

  14. J. Rotureau, U. van Kolck, Few-Body Syst. 54, 725 (2013). https://doi.org/10.1007/s00601-012-0455-6

    Article  ADS  Google Scholar 

  15. C. Ji, C. Elster, D.R. Phillips, Phys. Rev. C 90, 044004 (2014). https://doi.org/10.1103/PhysRevC.90.044004

    Article  ADS  Google Scholar 

  16. D.V. Fedorov, A.S. Jensen, J. Phys. A 34(30), 6003 (2001). https://doi.org/10.1088/0305-4470/34/30/311

    Article  MathSciNet  ADS  Google Scholar 

  17. D.V. Fedorov, A.S. Jensen, Nucl. Phys. A 697, 783 (2002). https://doi.org/10.1016/S0375-9474(01)01266-0

    Article  ADS  Google Scholar 

  18. H. Hebach, P. Henneberg, H. Kümmel, Phys. Lett. 24B, 134 (1967). https://doi.org/10.1016/0370-2693(67)90501-1

    Article  ADS  Google Scholar 

  19. M.S. Shah, A.N. Mitra, Phys. Rev. C 1, 35 (1970). https://doi.org/10.1103/PhysRevC.1.35

    Article  ADS  Google Scholar 

  20. A. Ghovanlou, D.R. Lehman, Phys. Rev. C 9, 1730 (1974). https://doi.org/10.1103/PhysRevC.9.1730

    Article  ADS  Google Scholar 

  21. M.V. Zhukov, L.V. Chulkov, B.V. Danilin, A.A. Korsheninnikov, Nucl. Phys. A 533, 428 (1991). https://doi.org/10.1016/0375-9474(91)90526-C

    Article  ADS  Google Scholar 

  22. M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson, J.S. Vaagen, Phys. Rep. 231, 151 (1993). https://doi.org/10.1016/0370-1573(93)90141-Y

    Article  ADS  Google Scholar 

  23. W. Glöckle, The Quantum Mechanical Few-Body Problem. Texts and Monographs in Physics (Springer, Berlin, 1983)

    Book  Google Scholar 

  24. L.D. Faddeev, Sov. Phys. JETP 12, 1014 (1961). [Zh. Eksp. Teor. Fiz. 39, 1459 (1960)]

  25. I.R. Afnan, A.W. Thomas, Top. Curr. Phys. 2, 1 (1977)

    Article  Google Scholar 

  26. E. Ryberg, C. Forssn, L. Platter, Few-Body Syst. 58(4), 143 (2017). https://doi.org/10.1007/s00601-017-1307-1

    Article  ADS  Google Scholar 

  27. E.P. Wigner, Phys. Rev. 73, 1002 (1948). https://doi.org/10.1103/PhysRev.73.1002

    Article  ADS  Google Scholar 

  28. W.N. Polyzou, W. Glöckle, Few-Body Syst. 9(2), 97 (1990). https://doi.org/10.1007/BF01091701

    Article  ADS  Google Scholar 

  29. B.H.J. Mckellar, C.M. Mckay, Aust. J. Phys. 36, 607 (1983). https://doi.org/10.1071/PH830607

    Article  ADS  Google Scholar 

  30. J. Formánek, R.J. Lombard, J. Mareš, Czechoslov. J. Phys. 54(3), 289 (2004). https://doi.org/10.1023/B:CJOP.0000018127.95600.a3

    Article  ADS  Google Scholar 

  31. L. Pricoupenko, Phys. Rev. Lett. 96, 050401 (2006). https://doi.org/10.1103/PhysRevLett.96.050401

    Article  ADS  Google Scholar 

  32. L. Pricoupenko, Phys. Rev. A 73, 012701 (2006). https://doi.org/10.1103/PhysRevA.73.012701

    Article  ADS  Google Scholar 

  33. S.R. Beane, M.J. Savage, Nucl. Phys. A 694, 511 (2001). https://doi.org/10.1016/S0375-9474(01)01088-0

    Article  ADS  Google Scholar 

  34. D.B. Kaplan, Nucl. Phys. B 494, 471 (1997). https://doi.org/10.1016/S0550-3213(97)00178-8

    Article  ADS  Google Scholar 

  35. D.R. Phillips, Czechoslov. J. Phys. 52, B49 (2002). https://doi.org/10.1007/s10582-002-0079-z

    Article  Google Scholar 

  36. M. Brodeur, T. Brunner, C. Champagne, S. Ettenauer, M.J. Smith, A. Lapierre, R. Ringle, V.L. Ryjkov, S. Bacca, P. Delheij, G.W.F. Drake, D. Lunney, A. Schwenk, J. Dilling, Phys. Rev. Lett. 108, 052504 (2012). https://doi.org/10.1103/PhysRevLett.108.052504

    Article  ADS  Google Scholar 

  37. D.E. Gonzalez Trotter, F.S. Meneses, W. Tornow, C.R. Howell, Q. Chen, A.S. Crowell, C.D. Roper, R.L. Walter, D. Schmidt, H. Witała, W. Glöckle, H. Tang, Z. Zhou, I. Šlaus, Phys. Rev. C 73, 034001 (2006). https://doi.org/10.1103/PhysRevC.73.034001

    Article  ADS  Google Scholar 

  38. R.A. Arndt, D.D. Long, L. Roper, Nucl. Phys. A 209(3), 429 (1973). https://doi.org/10.1016/0375-9474(73)90837-3

    Article  ADS  Google Scholar 

  39. H. Feshbach, Ann. Phys. 5, 357 (1958). https://doi.org/10.1016/0003-4916(58)90007-1

    Article  MathSciNet  ADS  Google Scholar 

  40. G.P. Lepage, Phys. Rev. A 16, 863 (1977). https://doi.org/10.1103/PhysRevA.16.863

    Article  ADS  Google Scholar 

  41. J. Adam Jr., F. Gross, C. Savkli, J.W. Van Orden, Phys. Rev. C 56, 641 (1997). https://doi.org/10.1103/PhysRevC.56.641

    Article  ADS  Google Scholar 

Download references

Acknowledgements

DRP and CJ thank Charlotte Elster for useful discussions during the early stages of this work. DRP thanks Jerry Yang for drawing his attention to Ref. [29]. MG thanks Wael Elkamhawy and Fabian Hildenbrand for useful discussions during the early stages of this work. The work of DRP was supported by the US Department of Energy under Contract DE-FG02-93ER-40756 and by the ExtreMe Matter Institute EMMI at the GSI Helmholtzzentrum für Schwerionenphysik, Darmstadt, Germany. HWH and MG were supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Project Number 279384907 – SFB 1245. HWH was also supported by the Bundesministerium für Bildung und Forschung (BMBF) through Contract 05P18RDFN1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Phillips.

Additional information

In memory of Ludwig Faddeev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection “Ludwig Faddeev Memorial Issue”.

Appendices

Alternative Derivation of the Normalization Condition

In this appendix we give an alternative derivation of the normalization condition in the presence of an energy-dependent potential. This derivation focuses on the resolvent of H(E). It is equivalent to the normalization conditions obtained for two-particle vertex functions in relativistic bound-state equations in Refs. [40, 41].

The resolvent of H(E) is:

$$\begin{aligned} G(E) :=\frac{1}{E - H(E)} . \end{aligned}$$
(104)

This contrasts with the resolvent of the energy-independent Hamiltonian obtained by evaluating H(E) at \(E=E_\alpha \), \({\bar{H}} :=H(E_\alpha )\). Denoting that resolvent by \({\bar{G}}(E)\) we have:

$$\begin{aligned} {\bar{G}}(E) :=\frac{1}{E-{\bar{H}}} . \end{aligned}$$
(105)

By construction, \({\bar{H}}\) and H(E) both have \(|\psi _\alpha \rangle \) as a right eigenstate corresponding to energy \(E_\alpha \). The rest of \({\bar{H}}\)’s spectrum will, however, be different. And, while the eigenstate \(|\psi _\alpha \rangle \) is common to the spectrum of both operators, it is not guaranteed that it should be normalized in the same way. Indeed, we will show here that it should not be.

Expanding H(E) around \(E=E_\alpha \) yields:

$$\begin{aligned} G(E)=\frac{1}{E-{\bar{H}} - (E-E_\alpha ) V'(E_\alpha ) - \cdots } , \end{aligned}$$
(106)

where \('\) denotes differentiation with respect to E. This, in turn, allows us to write:

$$\begin{aligned} G(E)={\bar{G}}(E)\left\{ 1 + \sum _{n=1}^\infty [V'(E_\alpha ) (E-E_\alpha ) {\bar{G}}(E)]^n\right\} + \hbox { regular as}\ E \rightarrow E_\alpha . \end{aligned}$$
(107)

Since \({\bar{G}}(E)\) is the resolvent of an energy-independent Hermitian operator it has a standard spectral representation. If \(E_\alpha \) is an isolated bound state then that is:

$$\begin{aligned} {\bar{G}}(E)=\frac{|{\bar{\psi }}_\alpha \rangle \langle {\bar{\psi }}_\alpha |}{E-E_\alpha } + \hbox { pieces in the space orthogonal to}\ | {\bar{\psi }}_\alpha \rangle . \end{aligned}$$
(108)

where we have used \(|{\bar{\psi }}_\alpha \rangle \) to emphasize that this eigenstates of \({\bar{H}}\) obey the standard normalization condition \(\langle {\bar{\psi }}_\beta |{\bar{\psi }}_\alpha \rangle =\delta _{\beta \alpha }\), since \({\bar{H}}\) is an energy-independent, Hermitian, operator. As discussed at length in Sect. 3 the states \(|\psi _\alpha \rangle \) do not obey this condition, although for \(\beta \ne \alpha \) this is not a surprise, since the spectrum of \({\bar{H}}\) differs from that of H apart from the one state at \(E=E_\alpha \). But for that particular state we must write:

$$\begin{aligned} \mathcal{Z}^{1/2} |\psi _\alpha \rangle =|{\bar{\psi }}_\alpha \rangle , \end{aligned}$$
(109)

with \(\mathcal{Z}\) an additional wave function renormalization associated with the energy dependence of V(E).

To fix \(\mathcal{Z}\) we insert Eq. (108) in Eq. (107) and sum the geometric series. This yields:

$$\begin{aligned} G(E)=\frac{|{\bar{\psi }}_\alpha \rangle \langle {\bar{\psi }}_\alpha |}{E-E_\alpha } \frac{1}{1 - \langle {\bar{\psi }}_\alpha | V'(E_\alpha ))|{\bar{\psi }}_\alpha \rangle } + \hbox { regular as}\ E \rightarrow E_\alpha . \end{aligned}$$
(110)

The factor in the denominator here ensures that the consistency condition:

$$\begin{aligned} G'(E)=-G(E) \left[ \frac{\partial }{\partial E} G^{-1}(E)\right] G(E) . \end{aligned}$$
(111)

is satisfied. The spectral decomposition (110) will then take the standard form:

$$\begin{aligned} G(E)=\frac{|\psi _\alpha \rangle \langle \psi _\alpha |}{E-E_\alpha } + \hbox { regular as}\ E \rightarrow E_\alpha , \end{aligned}$$
(112)

provided we identify:

$$\begin{aligned} \mathcal{Z}=1 - \langle {\bar{\psi }}_\alpha | V'(E_\alpha )|{\bar{\psi }}_\alpha \rangle =\langle {\bar{\psi }}_\alpha |\mathbb {1}- V'(E_\alpha )|{\bar{\psi }}_\alpha \rangle . \end{aligned}$$
(113)

In practice this means that we solve the Hamiltonian eigenvalue problem at \(E=E_\alpha \), thereby obtaining an eigenvector that is, prior to normalization, proportional to both \(|{\bar{\psi }}_\alpha \rangle \) and \(|\psi _\alpha \rangle \). Then, if we wish to compute the latter, we must normalize such that:

$$\begin{aligned} \langle \psi |\mathbb {1}- V'(E_\alpha )|\psi \rangle =1 , \end{aligned}$$
(114)

instead of using the standard

$$\begin{aligned} \langle \psi |\psi \rangle =1 . \end{aligned}$$
(115)

Additional Formulas for the Probability Density

1.1 Transformation of Jacobi Coordinates

For the evaluation of overlaps of the type \( {}^{}_{i}\! \left\langle {\varvec{p},\varvec{q}}\vert {\varvec{p^{\prime }},\varvec{q^{\prime }}}\right\rangle _{j}^{} \) the following functions are useful, since they abbreviate many expressions:

$$\begin{aligned} \varvec{\pi }_{1}{\left( \varvec{p},\varvec{q}\right) }&:=\varvec{p} + \frac{A}{A+1} \varvec{q} ,\end{aligned}$$
(116)
$$\begin{aligned} \varvec{\pi }_{2}{\left( \varvec{p},\varvec{q}\right) }&:=\varvec{p} + \frac{1}{2} \varvec{q} ,\end{aligned}$$
(117)
$$\begin{aligned} \varvec{\pi }_{3}{\left( \varvec{p},\varvec{q}\right) }&:=\varvec{p} + \frac{1}{A+1} \varvec{q} . \end{aligned}$$
(118)

The transformations can be summarized by the expression

$$\begin{aligned} {}^{}_{i}\! \left\langle {\varvec{p},\varvec{q}}\vert {\varvec{p^{\prime }},\varvec{q^{\prime }}}\right\rangle _{j}^{} =:\delta ^{(3)}{\left( \varvec{p^{\prime }}-\kappa _{ijp}{\left( \varvec{p},\varvec{q}\right) }\right) } \, \delta ^{(3)}{\left( \varvec{q^{\prime }}-\kappa _{ijq}{\left( \varvec{p},\varvec{q}\right) }\right) } , \end{aligned}$$
(119)

which defines \(\varvec{\kappa }_{ijk}{\left( \varvec{p},\varvec{q}\right) }\) with \(i,j \in \{n,c\}\), \(i \ne j\) and \(k \in \{p,q\}\). The functions \(\varvec{\kappa }_{ijk}\) are given by

$$\begin{aligned} \varvec{\kappa }_{ncp}&:=\varvec{\pi }_{2}{\left( \varvec{q}, -\varvec{\pi }_{1}{\left( \varvec{p},\varvec{q}\right) }\right) } ,\end{aligned}$$
(120)
$$\begin{aligned} \varvec{\kappa }_{ncq}&:=-\varvec{\pi }_{1}{\left( \varvec{p},\varvec{q}\right) } ,\end{aligned}$$
(121)
$$\begin{aligned} \varvec{\kappa }_{cnp}&:=-\varvec{\pi }_{1}{\left( \varvec{q},\varvec{\pi }_{2}{\left( \varvec{p},-\varvec{q}\right) }\right) } ,\end{aligned}$$
(122)
$$\begin{aligned} \varvec{\kappa }_{cnq}&:=\varvec{\pi }_{2}{\left( \varvec{p},-\varvec{q}\right) } . \end{aligned}$$
(123)

Furthermore, we define the functions \(\varvec{\kappa }^\prime _{ijk}{\left( \varvec{p},\varvec{q}\right) }\) with \(i,j \in \{n,c\}\) and \(k \in \{p,q\}\) by

$$\begin{aligned} {}^{}_{i}\! \left\langle {\varvec{p},\varvec{q}}\right| {\mathcal {P}_{nn}^\mathrm {(spatial)}}\left| {\varvec{p^{\prime }},\varvec{q^{\prime }}}\right\rangle _{j}^{} =:\delta ^{(3)}{\left( \varvec{p^{\prime }}-\varvec{\kappa }^\prime _{ijp}{\left( \varvec{p},\varvec{q}\right) }\right) } \, \delta ^{(3)}{\left( \varvec{q^{\prime }}-\varvec{\kappa }^\prime _{ijq}{\left( \varvec{p},\varvec{q}\right) }\right) } , \end{aligned}$$
(124)

where the spatial part of the \(nn\) permutation operator \(\mathcal {P}_{nn}\) is given by \(\mathcal {P}_{nn}^\mathrm {(spatial)}\). The used functions of the type \(\varvec{\kappa }^\prime _{ijk}\) read

$$\begin{aligned} \varvec{\kappa }_{nnp}^\prime&:=\varvec{\pi }_{3}{\left( \varvec{q},\varvec{\pi }_{3}{\left( \varvec{p},-\varvec{q}\right) }\right) } , \end{aligned}$$
(125)
$$\begin{aligned} \varvec{\kappa }_{nnq}^\prime&:=\varvec{\pi }_{3}{\left( \varvec{p},-\varvec{q}\right) } , \end{aligned}$$
(126)
$$\begin{aligned} \varvec{\kappa }_{cnp}^\prime&:=-\varvec{\pi }_{1}{\left( \varvec{q},-\varvec{\pi }_{2}{\left( \varvec{p},\varvec{q}\right) }\right) } , \end{aligned}$$
(127)
$$\begin{aligned} \varvec{\kappa }_{cnq}^\prime&:=-\varvec{\pi }_{2}{\left( \varvec{p},\varvec{q}\right) } . \end{aligned}$$
(128)

1.2 Simplification of Certain Combinations of Coupled Spherical Harmonics

In this appendix identities simplifying the angular dependence of the probability density are given. The angle \(\gamma \) between two vectors \(\varvec{v}_1\) and \(\varvec{v}_2\) is defined by

$$\begin{aligned}&\cos {\gamma \left( \theta _1, \varphi _1, \theta _2, \varphi _2 \right) } :=\varvec{\hat{v}_1} \cdot \varvec{\hat{v}_2}\, \end{aligned}$$
(129)
$$\begin{aligned}&\varvec{\hat{v}_i} = \begin{pmatrix} \sin {\theta _i} \cos {\varphi _i} \\ \sin {\theta _i} \sin {\varphi _i} \\ \cos {\theta _i} \end{pmatrix} . \end{aligned}$$
(130)

Expressed in terms of the angles of the two vectors it reads

$$\begin{aligned} \cos {\gamma \left( \theta _1,\varphi _1,\theta _2,\varphi _2\right) } :=\cos {\theta _1} \cos {\theta _2} + \sin {\theta _1} \sin {\theta _2} \cos {\left( \varphi _1 - \varphi _2\right) } . \end{aligned}$$
(131)

In fact, the angular dependence of the coupled spherical harmonic \(\mathcal {Y}_{11}^{00}\) is captured entirely by this angle \(\gamma \).

$$\begin{aligned} \mathcal {Y}_{11}^{00}{\left( \theta _1, \varphi _1, \theta _2, \varphi _2\right) } = \frac{-\sqrt{3}}{4\pi } \cos {\gamma \left( \theta _1, \varphi _1, \theta _2, \varphi _2\right) } . \end{aligned}$$
(132)

Also the following combination of coupled spherical harmonics can be purely expressed in terms of relative angles:

$$\begin{aligned} \sum _{M=-1}^{1} \mathcal {Y}_{11}^{1M}{\left( \theta _1, \varphi _1, \theta _2, \varphi _2\right) } \left( \mathcal {Y}_{11}^{1M}{\left( \theta _1^\prime , \varphi _1^\prime , \theta _2^\prime , \varphi _2^\prime \right) }\right) ^*&= \frac{1}{2} \left( \frac{3}{4\pi }\right) ^2 \bigg ( \cos {\gamma \left( \theta _1, \varphi _1, \theta _1^\prime , \varphi _1^\prime \right) } \cos {\gamma \left( \theta _2, \varphi _2, \theta _2^\prime , \varphi _2^\prime \right) } \nonumber \\&\quad -\, \cos {\gamma \left( \theta _1, \varphi _1, \theta _2^\prime , \varphi _2^\prime \right) } \cos {\gamma \left( \theta _1^\prime , \varphi _1^\prime , \theta _2, \varphi _2\right) } \bigg ) . \end{aligned}$$
(133)

Although these relative angles are angles between different vectors, their use simplifies the probability density a lot. If the identity is applied to our probability density all these relative angles will be only functions of \(p\), \(q\) and \(\theta _{pq}\). Therefore angular integrations over the probability density simplify significantly. Instead of four angular integrals only the one over \(\theta _{pq}\) has to be carried out numerically.

1.3 Numerical Calculation of \(X_{ij}\)

In the following expressions for the numerical calculation of the \(X_{ij}\) are given for any type of form factor. In a first step the expression for \(X_{nn}\) is derived using the identity

$$\begin{aligned} {}^{}_{n}\! \left\langle {p,q;\varOmega _n}\right| {-\mathcal {P}_{nn}}\left| {p^{\prime },q^{\prime };\varOmega _n}\right\rangle _{n}^{}&= -\int \mathrm{d}{\varOmega _{\varvec{p}}} \int \mathrm{d}{\varOmega _{\varvec{q}}} \int \mathrm{d}{\varOmega _{\varvec{p^{\prime }}}} \int \mathrm{d}{\varOmega _{\varvec{q^{\prime }}}} \nonumber \\&\quad \times \, {}^{}_{n}\! \left\langle {p,q;\varOmega _n}\right| { \left( \left| {\varvec{p},\varvec{q}}\right\rangle _{n}^{} {}^{}_{n}\! \left\langle {\varvec{p},\varvec{q}}\right| {\mathcal {P}_{nn}^\mathrm {(spatial)}}\left| {\varvec{p^{\prime }},\varvec{q^{\prime }}}\right\rangle _{n}^{} {}^{}_{n}\! \langle {\varvec{p^{\prime }},\varvec{q^{\prime }}}|{\otimes }\mathcal {P}_{nn}^\mathrm {(spin)}\right) }\left| {p^{\prime },q^{\prime };\varOmega _n}\right\rangle _{n}^{} . \end{aligned}$$
(134)

The calculation yields

$$\begin{aligned} X_{nn}{\left( q,q^{\prime };E\right) }&= \int \mathrm{d}{p^{}} p^{2} \int \mathrm{d}{p^{\prime }} p^{\prime 2} g_{l_n}{\left( p\right) } G_0^{\left( n\right) }{\left( p,q;E\right) } g_{l_n}{\left( p^{\prime }\right) } {}^{}_{n}\! \left\langle {p,q;\varOmega _n}\right| {-\mathcal {P}_{nn}}\left| {p^{\prime },q^{\prime };\varOmega _n}\right\rangle _{n}^{} \nonumber \\&=\, - \int \mathrm{d}{\varOmega _{\varvec{p}}} \int \mathrm{d}{\varOmega _{\varvec{q}}} \int \mathrm{d}{\varOmega _{\varvec{p^{\prime }}}} \int \mathrm{d}{\varOmega _{\varvec{q^{\prime }}}} g_{l_n}{\left( \pi _{3}{\left( \varvec{q^{\prime }},\varvec{q^{}}\right) }\right) } G_0^{\left( n\right) }{\left( \pi _{3}{\left( \varvec{q^{\prime }},\varvec{q^{}}\right) }, q; E\right) } g_{l_n}{\left( \pi _{3}{\left( \varvec{q^{}},\varvec{q^{\prime }}\right) }\right) } \nonumber \\&\quad \times \, \sum _{L=0}^1 \sum _{M=-L}^L \frac{ \left( -2\right) ^{1-L} }{ 6L+3 } \left( \mathcal {Y}_{11}^{L M}{\left( \varvec{p},\varvec{q}\right) } \right) ^* \mathcal {Y}_{11}^{L M}{\left( \varvec{p^{\prime }},\varvec{q^{\prime }}\right) } \nonumber \\&\quad \times \, \delta ^{(\varOmega )}{\left( \varvec{p} - \varvec{\pi }_{3}{\left( \varvec{q^{\prime }}, \varvec{q}\right) }\right) } \delta ^{(\varOmega )}{\left( \varvec{p^{\prime }} - \varvec{\pi }_{3}{\left( \varvec{q}, \varvec{q^{\prime }}\right) }\right) } \nonumber \\&= - \int \mathrm{d}{\varOmega _{\varvec{q}}} \int \mathrm{d}{\varOmega _{\varvec{q^{\prime }}}} g_{l_n}{\left( \pi _{3}{\left( \varvec{q^{\prime }},\varvec{q^{}}\right) }\right) } G_0^{\left( n\right) }{\left( \pi _{3}{\left( \varvec{q^{\prime }},\varvec{q^{}}\right) }, q; E\right) } g_{l_n}{\left( \pi _{3}{\left( \varvec{q^{}},\varvec{q^{\prime }}\right) }\right) } \nonumber \\&\quad \times \, \sum _{L=0}^1 \sum _{M_L=-L}^L \frac{ \left( -2\right) ^{1-L} }{ 6L+3 } \left( \mathcal {Y}_{11}^{L M_L}{\left( \varvec{\pi }_{3}{\left( \varvec{q^{\prime }}, \varvec{q}\right) }, \varvec{q}\right) } \right) ^* \mathcal {Y}_{11}^{L M_L}{\left( \varvec{\pi }_{3}{\left( \varvec{q}, \varvec{q^{\prime }}\right) }, \varvec{q^{\prime }}\right) } , \end{aligned}$$
(135)

where \(\delta ^{(\varOmega )}{\left( \varvec{p}- \varvec{p^{\prime }}\right) } :=\delta {\left( \varphi -\varphi ^\prime \right) } \frac{\delta {\left( \theta -\theta ^\prime \right) }}{\sin {\theta }}\) holds. In order to evaluate this expression only one angular integral has to be computed numerically by using the identities given in “Appendix B.2”.

The calculation of \(X_{nc}\) is based on an identity similar to Eq. (134):

$$\begin{aligned} {}^{}_{n}\! \left\langle {p,q;\varOmega _n}\vert {p^{\prime },q^{\prime };\varOmega _c}\right\rangle _{c}^{}&= \int \mathrm{d}{\varOmega _{\varvec{p}}} \int \mathrm{d}{\varOmega _{\varvec{q}}} \int \mathrm{d}{\varOmega _{\varvec{p^{\prime }}}} \int \mathrm{d}{\varOmega _{\varvec{q^{\prime }}}} \nonumber \\&\quad \times \, {}^{}_{n}\! \left\langle {p,q;\varOmega _n}\right| { \left( \left| {\varvec{p},\varvec{q}}\right\rangle _{n}^{} {}^{}_{n}\! \left\langle {\varvec{p},\varvec{q}}\vert {\varvec{p^{\prime }},\varvec{q^{\prime }}}\right\rangle _{c}^{} {}^{}_{c}\! \langle {\varvec{p^{\prime }},\varvec{q^{\prime }}}|{\otimes }\mathbb {1}^{\left( \mathrm {spin}\right) }\right) }\left| {p^{\prime },q^{\prime };\varOmega _c}\right\rangle _{c}^{} . \end{aligned}$$
(136)

With it one obtains

$$\begin{aligned} X_{nc}{\left( q,q^{\prime };E\right) }&= \int \mathrm{d}{p^{}} p^{2} \int \mathrm{d}{p^{\prime }} p^{\prime 2} g_{l_n}{\left( p\right) } G_0^{\left( n\right) }{\left( p,q;E\right) } g_{l_c}{\left( p^{\prime }\right) } {}^{}_{n}\! \left\langle {p,q;\varOmega _n}\vert {p^{\prime },q^{\prime };\varOmega _c}\right\rangle _{c}^{} \nonumber \\&= - \int \mathrm{d}{\varOmega _{\varvec{p}}} \int \mathrm{d}{\varOmega _{\varvec{q}}} \int \mathrm{d}{\varOmega _{\varvec{p^{\prime }}}} \int \mathrm{d}{\varOmega _{\varvec{q^{\prime }}}} g_{l_n}{\left( \pi _{1}{\left( \varvec{q^{\prime }},\varvec{q^{}}\right) }\right) } G_0^{\left( n\right) }{\left( \pi _{1}{\left( \varvec{q^{\prime }},\varvec{q^{}}\right) }, q; E\right) } g_{l_c}{\left( \pi _{2}{\left( \varvec{q^{}},\varvec{q^{\prime }}\right) }\right) } \nonumber \\&\quad \times \, \sqrt{\frac{2}{3}} \left( \mathcal {Y}_{11}^{00}{\left( \varvec{p},\varvec{q}\right) } \right) ^* \mathcal {Y}_{00}^{00}{\left( \varvec{p^{\prime }}, \varvec{q^{\prime }}\right) } \delta ^{(\varOmega )}{\left( \varvec{p} + \varvec{\pi }_{1}{\left( \varvec{q^{\prime }}, \varvec{q}\right) }\right) } \delta ^{(\varOmega )}{\left( \varvec{p^{\prime }} - \varvec{\pi }_{2}{\left( \varvec{q}, \varvec{q^{\prime }}\right) }\right) } \nonumber \\&= - \int \mathrm{d}{\varOmega _{\varvec{q}}} \int \mathrm{d}{\varOmega _{\varvec{q^{\prime }}}} g_{l_n}{\left( \pi _{1}{\left( \varvec{q^{\prime }},\varvec{q^{}}\right) }\right) } G_0^{\left( n\right) }{\left( \pi _{1}{\left( \varvec{q^{\prime }},\varvec{q^{}}\right) }, q; E\right) } g_{l_c}{\left( \pi _{2}{\left( \varvec{q^{}},\varvec{q^{\prime }}\right) }\right) } \nonumber \\&\quad \times \, \sqrt{\frac{2}{3}} \left( \mathcal {Y}_{11}^{00}{\left( -\varvec{\pi }_{1}{\left( \varvec{q^{\prime }}, \varvec{q}\right) }, \varvec{q}\right) } \right) ^* \mathcal {Y}_{00}^{00}{\left( \varvec{\pi }_{2}{\left( \varvec{q}, \varvec{q^{\prime }}\right) }, \varvec{q^{\prime }}\right) }\nonumber \\&= \frac{1}{\sqrt{2}} \int _{-1}^{1} \mathrm{d}{\cos {\theta _{q,q^{\prime }}}} g_{l_n}{\left( \pi _{1}{\left( \varvec{q^{\prime }},\varvec{q^{}}\right) }\right) } G_0^{\left( n\right) }{\left( \pi _{1}{\left( \varvec{q^{\prime }},\varvec{q^{}}\right) }, q; E\right) } g_{l_c}{\left( \pi _{2}{\left( \varvec{q^{}},\varvec{q^{\prime }}\right) }\right) } \cos {\theta _{-\varvec{\pi }_{1}{\left( \varvec{q^{\prime }}, \varvec{q}\right) },\varvec{q}}} , \end{aligned}$$
(137)

where the definition \(\theta _{\varvec{a},\varvec{b}} :=\arccos { \left( \varvec{a} \cdot \varvec{b}/\left( ab\right) \right) }\) holds. Note that

$$\begin{aligned} X_{nc}{\left( q,q^{\prime };E\right) } = X_{cn}{\left( q^{\prime },q;E\right) } \end{aligned}$$
(138)

holds. This can be shown using that \( {}^{}_{n}\! \left\langle {p,q;\varOmega _n}\vert {p^{\prime },q^{\prime };\varOmega _c}\right\rangle _{c}^{} \) is real.

The implementation of these results was checked by evaluating the expressions for Heaviside form factors, for which the analytic expressions have been calculated in [15]. As in the derivation of the analytic expressions the Heaviside form factors have been neglected, discrepancies from the numerical results can occur at momenta of the order of the regularization scale.

1.4 Overlaps in Partial Wave Basis

In the following expressions for the overlaps of partial wave states with different spectators are derived. Also matrix elements of the \(nn\) permutation operator \(\mathcal {P}_{nn}= \mathcal {P}_{nn}^\mathrm {(spatial)}\otimes \mathcal {P}_{nn}^\mathrm {(spin)}\) are given in this basis. We obtain

$$\begin{aligned} {}^{}_{c}\! \left\langle {p,q;\varOmega _c}\vert {p^{\prime },q^{\prime };\varOmega _n}\right\rangle _{n}^{}&= \int \mathrm{d}{\varOmega _{\varvec{p}}} \int \mathrm{d}{\varOmega _{\varvec{q}}} \int \mathrm{d}{\varOmega _{\varvec{p^{\prime }}}} \int \mathrm{d}{\varOmega _{\varvec{q^{\prime }}}} \nonumber \\&\quad \times \, {}^{}_{c}\! \left\langle {p,q;\varOmega _c}\right| { \left( \left| {\varvec{p},\varvec{q}}\right\rangle _{c}^{} {}^{}_{c}\! \left\langle {\varvec{p},\varvec{q}}\vert {\varvec{p^{\prime }},\varvec{q^{\prime }}}\right\rangle _{n}^{} {}^{}_{n}\! \langle {\varvec{p^{\prime }},\varvec{q^{\prime }}}|{\otimes }\mathbb {1}^{\left( \mathrm {spin}\right) }\right) }\left| {p^{\prime },q^{\prime };\varOmega _n }\right\rangle _{n}^{} \nonumber \\&= \frac{ \sqrt{2} }{\left( 4\pi \right) ^2} \int \mathrm{d}{\varOmega _{\varvec{p}}} \int \mathrm{d}{\varOmega _{\varvec{q}}} \int \mathrm{d}{\varOmega _{\varvec{p^{\prime }}}} \int \mathrm{d}{\varOmega _{\varvec{q^{\prime }}}} \nonumber \\&\quad \times \, \cos {\theta _{\varvec{p^{\prime }},\varvec{q^{\prime }}}} \delta ^{(3)}{\left( \varvec{p^{\prime }} - \varvec{\kappa }_{cnp}{\left( \varvec{p},\varvec{q}\right) } \right) } \delta ^{(3)}{\left( \varvec{q^{\prime }} - \varvec{\kappa }_{cnq}{\left( \varvec{p},\varvec{q}\right) } \right) } ,\end{aligned}$$
(139)
$$\begin{aligned} {}^{}_{c}\! \left\langle {p,q;\varOmega _c}\right| {\mathcal {P}_{nn}}\left| {p^{\prime },q^{\prime };\varOmega _n}\right\rangle _{n}^{}&= \int \mathrm{d}{\varOmega _{\varvec{p}}} \int \mathrm{d}{\varOmega _{\varvec{q}}} \int \mathrm{d}{\varOmega _{\varvec{p^{\prime }}}} \int \mathrm{d}{\varOmega _{\varvec{q^{\prime }}}} \nonumber \\&\quad \times \, {}^{}_{c}\! \left\langle {p,q;\varOmega _c}\right| { \left( \left| {\varvec{p},\varvec{q}}\right\rangle _{c}^{} {}^{}_{c}\! \left\langle {\varvec{p},\varvec{q}}\right| {\mathcal {P}_{nn}^\mathrm {(spatial)}}\left| {\varvec{p^{\prime }},\varvec{q^{\prime }}}\right\rangle _{n}^{} {}^{}_{n}\! \langle {\varvec{p^{\prime }},\varvec{q^{\prime }}}|{\otimes }\mathcal {P}_{nn}^\mathrm {(spin)}\right) }\left| {p^{\prime },q^{\prime };\varOmega _n }\right\rangle _{n}^{} \nonumber \\&= -\frac{ \sqrt{2} }{\left( 4\pi \right) ^2} \int \mathrm{d}{\varOmega _{\varvec{p}}} \int \mathrm{d}{\varOmega _{\varvec{q}}} \int \mathrm{d}{\varOmega _{\varvec{p^{\prime }}}} \int \mathrm{d}{\varOmega _{\varvec{q^{\prime }}}} \nonumber \\&\quad \times \, \cos {\theta _{\varvec{p^{\prime }},\varvec{q^{\prime }}}} \delta ^{(3)}{\left( \varvec{p^{\prime }} - \varvec{\kappa }_{cnp}^{\prime }{\left( \varvec{p},\varvec{q}\right) } \right) } \delta ^{(3)}{\left( \varvec{q^{\prime }} - \varvec{\kappa }_{cnq}^{\prime }{\left( \varvec{p},\varvec{q}\right) } \right) } , \end{aligned}$$
(140)
$$\begin{aligned} {}^{}_{n}\! \left\langle {p,q;\varOmega _n}\vert {p^{\prime },q^{\prime };\varOmega _c}\right\rangle _{c}^{}&= \int \mathrm{d}{\varOmega _{\varvec{p}}} \int \mathrm{d}{\varOmega _{\varvec{q}}} \int \mathrm{d}{\varOmega _{\varvec{p^{\prime }}}} \int \mathrm{d}{\varOmega _{\varvec{q^{\prime }}}} \nonumber \\&\quad \times \, {}^{}_{n}\! \left\langle {p,q;\varOmega _n}\right| { \left( \left| {\varvec{p},\varvec{q}}\right\rangle _{n}^{} {}^{}_{n}\! \left\langle {\varvec{p},\varvec{q}}\vert {\varvec{p^{\prime }},\varvec{q^{\prime }}}\right\rangle _{c}^{} {}^{}_{c}\! \langle {\varvec{p^{\prime }},\varvec{q^{\prime }}}|{\otimes }\mathbb {1}^{\left( \mathrm {spin}\right) }\right) }\left| {p^{\prime },q^{\prime };\varOmega _c }\right\rangle _{c}^{} \nonumber \\&= \frac{\sqrt{2}}{\left( 4\pi \right) ^2} \int \mathrm{d}{\varOmega _{\varvec{p}}} \int \mathrm{d}{\varOmega _{\varvec{q}}} \int \mathrm{d}{\varOmega _{\varvec{p^{\prime }}}} \int \mathrm{d}{\varOmega _{\varvec{q^{\prime }}}} \nonumber \\&\quad \times \, \cos {\theta _{\varvec{p},\varvec{q}}} \delta ^{(3)}{\left( \varvec{p^{\prime }} - \varvec{\kappa }_{ncp}{\left( \varvec{p},\varvec{q}\right) } \right) } \delta ^{(3)}{\left( \varvec{q^{\prime }} - \varvec{\kappa }_{ncq}{\left( \varvec{p},\varvec{q}\right) } \right) } , \end{aligned}$$
(141)
$$\begin{aligned} {}^{}_{n}\! \left\langle {p,q;\varOmega _n}\right| {\mathcal {P}_{nn}}\left| {p^{\prime },q^{\prime };\varOmega _n}\right\rangle _{n}^{}&= \int \mathrm{d}{\varOmega _{\varvec{p}}} \int \mathrm{d}{\varOmega _{\varvec{q}}} \int \mathrm{d}{\varOmega _{\varvec{p^{\prime }}}} \int \mathrm{d}{\varOmega _{\varvec{q^{\prime }}}} \nonumber \\&\quad \times \, {}^{}_{n}\! \left\langle {p,q;\varOmega _n}\right| { \left( \left| {\varvec{p},\varvec{q}}\right\rangle _{n}^{} {}^{}_{n}\! \left\langle {\varvec{p},\varvec{q}}\right| {\mathcal {P}_{nn}^\mathrm {(spatial)}}\left| {\varvec{p^{\prime }},\varvec{q^{\prime }}}\right\rangle _{n}^{} {}^{}_{n}\! \langle {\varvec{p^{\prime }},\varvec{q^{\prime }}}|{\otimes }\mathcal {P}_{nn}^\mathrm {(spin)}\right) }\left| {p^{\prime },q^{\prime };\varOmega _n }\right\rangle _{n}^{} \nonumber \\&= \int \mathrm{d}{\varOmega _{\varvec{p}}} \int \mathrm{d}{\varOmega _{\varvec{q}}} \int \mathrm{d}{\varOmega _{\varvec{p^{\prime }}}} \int \mathrm{d}{\varOmega _{\varvec{q^{\prime }}}} \sum _{L=0}^1 \sum _{M=-L}^{L} \left( -1\right) ^{1-L} \frac{2^{1-L}}{6L+3} \nonumber \\&\quad \times \, \left( \mathcal {Y}_{11}^{LM}{\left( \varvec{p},\varvec{q}\right) }\right) ^* \mathcal {Y}_{11}^{LM}{\left( \varvec{p^{\prime }},\varvec{q^{\prime }}\right) } \delta ^{(3)}{\left( \varvec{p^{\prime }} - \varvec{\kappa }_{nnp}^{\prime }{\left( \varvec{p},\varvec{q}\right) } \right) } \delta ^{(3)}{\left( \varvec{q^{\prime }} - \varvec{\kappa }_{nnq}^{\prime }{\left( \varvec{p},\varvec{q}\right) }\right) } . \end{aligned}$$
(142)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göbel, M., Hammer, HW., Ji, C. et al. Momentum-Space Probability Density of \({}^6\)He in Halo Effective Field Theory. Few-Body Syst 60, 61 (2019). https://doi.org/10.1007/s00601-019-1528-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-019-1528-6

Navigation