Skip to main content
Log in

Matrix Elements of One Dimensional Explicitly Correlated Gaussian Basis Functions

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Kinetic, potential and overlap matrix elements of one dimensional correlated Gaussians multiplied by polynomial factors are presented. These matrix elements can be used to calculate energies of one dimensional cold atom systems, or to construct a tensorial product to calculate energies in 2 or 3 dimensional systems with a nonspherical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. H. Moritz, T. Stöferle, M. Köhl, T. Esslinger, Phys. Rev. Lett. 91, 250402 (2003). https://doi.org/10.1103/PhysRevLett.91.250402

    Article  ADS  Google Scholar 

  2. T. Stöferle, H. Moritz, C. Schori, M. Köhl, T. Esslinger, Phys. Rev. Lett. 92, 130403 (2004). https://doi.org/10.1103/PhysRevLett.92.130403

    Article  ADS  Google Scholar 

  3. T. Kinoshita, T. Wenger, D.S. Weiss, Nature 440(7086), 900 (2006). https://doi.org/10.1038/nature04693

    Article  ADS  Google Scholar 

  4. T. Kinoshita, T. Wenger, D.S. Weiss, Science 305(5687), 1125 (2004). https://doi.org/10.1126/science.1100700

    Article  ADS  Google Scholar 

  5. E. Haller, M. Gustavsson, M.J. Mark, J.G. Danzl, R. Hart, G. Pupillo, H.C. Nägerl, Science 325(5945), 1224 (2009). https://doi.org/10.1126/science.1175850

    Article  ADS  Google Scholar 

  6. G. Pagano, M. Mancini, G. Cappellini, P. Lombardi, F. Schäfer, H. Hu, X.J. Liu, J. Catani, C. Sias, M. Inguscio, L. Fallani, Nature Physics (2014). https://doi.org/10.1038/nphys2878

    Article  Google Scholar 

  7. B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G.V. Shlyapnikov, T.W. Hänsch, I. Bloch, Nature 429(6989), 277 (2004). https://doi.org/10.1038/nature02530

    Article  ADS  Google Scholar 

  8. D. Pecak, A.S. Dehkharghani, N.T. Zinner, T. Sowinski, Phys. Rev. A 95, 053632 (2017). https://doi.org/10.1103/PhysRevA.95.053632

    Article  ADS  Google Scholar 

  9. J. Chen, J.M. Schurer, P. Schmelcher, Phys. Rev. A 98, 023602 (2018). https://doi.org/10.1103/PhysRevA.98.023602

    Article  ADS  Google Scholar 

  10. T. Sowiński, M.Á. García-March, Rep. Prog. Phys 82(10), 104401 (2019). https://doi.org/10.1088/1361-6633/ab3a80

    Article  ADS  Google Scholar 

  11. J. von Stecher, C.H. Greene, D. Blume, Phys. Rev. A 77, 043619 (2008). https://doi.org/10.1103/PhysRevA.77.043619

    Article  ADS  Google Scholar 

  12. D. Rakshit, K.M. Daily, D. Blume, Phys. Rev. A 85, 033634 (2012). https://doi.org/10.1103/PhysRevA.85.033634

    Article  ADS  Google Scholar 

  13. Y. Ding, C.H. Greene, Phys. Rev. A 95, 053602 (2017). https://doi.org/10.1103/PhysRevA.95.053602

    Article  ADS  Google Scholar 

  14. Y. Yan, D. Blume, Phys. Rev. A 91, 043607 (2015). https://doi.org/10.1103/PhysRevA.91.043607

    Article  ADS  Google Scholar 

  15. S.F. Boys, Proc. R. Soc. Lond. Ser. A 258, 402–411 (1960). https://doi.org/10.1098/rspa.1960.0195

  16. K. Singer, Proc. R. Soc. Lond. Ser. A 258, 412–420 (1960). https://doi.org/10.1098/rspa.1960.0196

  17. W. Kołos, L. Wolniewicz, Rev. Mod. Phys. 35, 473 (1963). https://doi.org/10.1103/RevModPhys.35.473

    Article  ADS  Google Scholar 

  18. G.W.F. Drake, R.A. Swainson, Phys. Rev. A 44, 5448 (1991). https://doi.org/10.1103/PhysRevA.44.5448

    Article  ADS  Google Scholar 

  19. Z. Yan, G.W.F. Drake, J. Phys. B 30, 4723 (1997). https://doi.org/10.1088/0953-4075/30/21/012

    Article  ADS  Google Scholar 

  20. V.I. Korobov, Phys. Rev. A 61, 064503 (2000)

    Article  ADS  Google Scholar 

  21. H. Nakatsuji, H. Nakashima, Y. Kurokawa, A. Ishikawa, Phys. Rev. Lett. 99, 240402 (2007). https://doi.org/10.1103/PhysRevLett.99.240402

    Article  ADS  Google Scholar 

  22. G.G. Ryzhikh, J. Mitroy, Phys. Rev. Lett. 79, 4124 (1997)

    Article  ADS  Google Scholar 

  23. S. Bubin, K. Varga, Phys. Rev. A 84, 012509 (2011). https://doi.org/10.1103/PhysRevA.84.012509

    Article  ADS  Google Scholar 

  24. S. Bubin, L. Adamowicz, J. Chem. Phys. 120, 6051 (2004)

    Article  ADS  Google Scholar 

  25. M. Stanke, D. Kȩdziera, M. Molski, S. Bubin, M. Barysz, L. Adamowicz, Phys. Rev. Lett. 96, 233002 (2006). https://doi.org/10.1103/PhysRevLett.96.233002

    Article  ADS  Google Scholar 

  26. W. Cencek, J. Komasa, J. Rychlewski, Chem. Phys. Lett. 246, 417 (1995). https://doi.org/10.1016/0009-2614(95)01146-8

    Article  ADS  Google Scholar 

  27. K.L. Sharkey, N. Kirnosov, L. Adamowicz, J. Chem. Phys. 138(10), 104107 (2013). https://doi.org/10.1063/1.4794192

    Article  ADS  Google Scholar 

  28. K.L. Sharkey, N. Kirnosov, L. Adamowicz, J. Chem. Phys. 139(16), 164119 (2013). https://doi.org/10.1063/1.4826450

    Article  ADS  Google Scholar 

  29. N. Kirnosov, K.L. Sharkey, L. Adamowicz, J. Chem. Phys. 139(20), 204105 (2013). https://doi.org/10.1063/1.4834596

    Article  ADS  Google Scholar 

  30. S. Bubin, M. Pavanello, W.C. Tung, K.L. Sharkey, L. Adamowicz, Chem. Rev. 113(1), 36–79 (2013). https://doi.org/10.1021/cr200419d

    Article  Google Scholar 

  31. M. Formanek, K.L. Sharkey, N. Kirnosov, L. Adamowicz, J. Chem. Phys. 141(15), 154103 (2014). https://doi.org/10.1063/1.4897634

    Article  ADS  Google Scholar 

  32. K.L. Sharkey, L. Adamowicz, J. Chem. Phys. 140(17), 174112 (2014). https://doi.org/10.1063/1.4873916

    Article  ADS  Google Scholar 

  33. E.A. Hylleraas, Z. Phys. 48, 469 (1928)

    Article  ADS  Google Scholar 

  34. E.A. Hylleraas, Z. Phys. 54, 347 (1929)

    Article  ADS  Google Scholar 

  35. F.W. King, D. Quicker, J. Langer, J. Chem. Phys. 134, 124114 (2011). https://doi.org/10.1063/1.3569565

    Article  ADS  Google Scholar 

  36. P.M. Kozlowski, L. Adamowicz, J. Chem. Phys. 95, 6681 (1991). https://doi.org/10.1063/1.461538

    Article  ADS  Google Scholar 

  37. P.M. Kozlowski, L. Adamowicz, J. Chem. Phys. 96, 9013 (1992). https://doi.org/10.1063/1.462259

    Article  ADS  Google Scholar 

  38. W. Cencek, J. Rychlewski, J. Chem. Phys. 98, 1252 (1993)

    Article  ADS  Google Scholar 

  39. W. Cencek, J. Rychlewski, J. Chem. Phys. 102, 2533 (1995)

    Article  ADS  Google Scholar 

  40. K. Varga, Y. Suzuki, Phys. Rev. C 52, 2885 (1995)

    Article  ADS  Google Scholar 

  41. Y. Suzuki, K. Varga, Stochastic variational Approach to Quantum-Mechanical Few-Body Problems, vol. 172 (Springer, New York, 1998)

    MATH  Google Scholar 

  42. D. Blume, Y. Yan, Phys. Rev. Lett. 113, 213201 (2014). https://doi.org/10.1103/PhysRevLett.113.213201

    Article  ADS  Google Scholar 

  43. M. Puchalski, K. Pachucki, Phys. Rev. Lett. 111, 243001 (2013). https://doi.org/10.1103/PhysRevLett.111.243001

    Article  ADS  Google Scholar 

  44. M. Puchalski, K. Pachucki, Phys. Rev. A 89, 032510 (2014). https://doi.org/10.1103/PhysRevA.89.032510

    Article  ADS  Google Scholar 

  45. M. Puchalski, K. Pachucki, Phys. Rev. A 92, 012513 (2015). https://doi.org/10.1103/PhysRevA.92.012513

    Article  ADS  Google Scholar 

  46. X.Y. Yin, D. Blume, Phys. Rev. A 92, 013608 (2015). https://doi.org/10.1103/PhysRevA.92.013608

    Article  ADS  Google Scholar 

  47. W.C. Tung, M. Pavanello, L. Adamowicz, J. Chem. Phys. 133(12), 124106 (2010). https://doi.org/10.1063/1.3491029

    Article  ADS  Google Scholar 

  48. S. Bubin, L. Adamowicz, J. Chem. Phys. 128, 114107 (2008). https://doi.org/10.1063/1.2894866

    Article  ADS  Google Scholar 

  49. K.L. Sharkey, M. Pavanello, S. Bubin, L. Adamowicz, Phys. Rev. A 80, 062510 (2009). https://doi.org/10.1103/PhysRevA.80.062510

    Article  ADS  Google Scholar 

  50. K.L. Sharkey, S. Bubin, L. Adamowicz, J. Chem. Phys. 134, 044120 (2011). https://doi.org/10.1063/1.3523348

    Article  ADS  Google Scholar 

  51. K.L. Sharkey, S. Bubin, L. Adamowicz, J. Chem. Phys. 134, 194114 (2011). https://doi.org/10.1063/1.3591836

    Article  ADS  Google Scholar 

  52. K.L. Sharkey, S. Bubin, L. Adamowicz, Phys. Rev. A 83, 012506 (2011). https://doi.org/10.1103/PhysRevA.83.012506

    Article  ADS  Google Scholar 

  53. K.L. Sharkey, S. Bubin, L. Adamowicz, J. Chem. Phys. 132, 184106 (2010). https://doi.org/10.1063/1.3419931

    Article  ADS  Google Scholar 

  54. Y. Suzuki, W. Horiuchi, M. Orabi, K. Arai, Few-Body Systems 42(1–4), 33–72 (2008). https://doi.org/10.1007/s00601-008-0200-3

    Article  ADS  Google Scholar 

  55. E. Mátyus, M. Reiher, J. Chem. Phys. 137(2), 024104 (2012). https://doi.org/10.1063/1.4731696

    Article  ADS  Google Scholar 

  56. K. Strasburger, J. Chem. Phys. 141(4), 044104 (2014). https://doi.org/10.1063/1.4890373

    Article  ADS  Google Scholar 

  57. M. Cafiero, S. Bubin, L. Adamowicz, Phys. Chem. Chem. Phys. 5, 1491–1501 (2003). https://doi.org/10.1039/B211193D

    Article  Google Scholar 

  58. J. Mitroy, S. Bubin, W. Horiuchi, Y. Suzuki, L. Adamowicz, W. Cencek, K. Szalewicz, J. Komasa, D. Blume, K. Varga, Rev. Mod. Phys. 85, 693 (2013). https://doi.org/10.1103/RevModPhys.85.693

    Article  ADS  Google Scholar 

  59. P.M. Kozlowski, L. Adamowicz, J. Chem. Phys. 97, 5063 (1992). https://doi.org/10.1063/1.463827

    Article  ADS  Google Scholar 

  60. J. Komasa, W. Cencek, J. Rychlewski, Phys. Rev. A 52, 4500 (1995)

    Article  ADS  Google Scholar 

  61. T. Joyce, K. Varga, J. Chem. Phys. 144(18), 184106 (2016). https://doi.org/10.1063/1.4948708

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Science Foundation (Grant No. 1826917).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kálmán Varga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In this appendix we show an example how to generate integers satisfying Eq. (17). First we rewrite Eq. (17) as

$$\begin{aligned} k_{1,p} + k_{2,p}+ \cdots + 2k_{p,p} + \cdots + k_{p,2N}= m_{p} \end{aligned}$$
(56)

This equation can be written in form of a linear equation by reindexing \(k_{1,p},{\ldots },k_{p,2N}\) to form a vector, q, and defining an S matrix for the the coefficients of q:

$$\begin{aligned} \sum _{i=1}^{2N} q_{i}S_{ip} + \sum _{k=2N+1}^{2N + \frac{2N(2N-1)}{2}} q_{k}S_{kp}=m_{p} \end{aligned}$$
(57)

To illustrate how this can be done we give a \(N=2\) example showing the equivalence between Eqs. (56) and (57).

Starting with Eq. (56) for \(N=2\),

$$\begin{aligned}&2k_{1,1} + k_{1,2} + k_{1,3} + k_{1,4}=m_{1}\nonumber \\&2k_{2,2} + k_{1,2} + k_{2,3} + k_{2,4}=m_{2}\nonumber \\&2k_{3,3} + k_{1,3} + k_{2,3} + k_{3,4}=m_{3}\nonumber \\&2k_{4,4} + k_{1,4} + k_{2,4} + k_{3,4}=m_{4}\nonumber \\ \end{aligned}$$
(58)

Writing out the summations of Eq. (57),

$$\begin{aligned}&q_{1}S_{1,1} + q_{2}S_{2,1} + q_{3}S_{3,1} + q_{4}S_{4,1} \nonumber \\&\quad + q_{5}S_{5,1}+ q_{6}S_{6,1} + q_{7}S_{7,1} + q_{8}S_{8,1} + q_{9}S_{9,1} + q_{10}S_{10,1} = m_{1} \end{aligned}$$
(59)
$$\begin{aligned}&q_{1}S_{1,2} + q_{2}S_{2,2} + q_{3}S_{3,2} + q_{4}S_{4,2} \nonumber \\&\quad + q_{5}S_{5,2}+ q_{6}S_{6,2} + q_{7}S_{7,2} + q_{8}S_{8,2} + q_{9}S_{9,2} + q_{10}S_{10,2} = m_{2} \end{aligned}$$
(60)
$$\begin{aligned}&q_{1}S_{1,3} + q_{2}S_{2,3} + q_{3}S_{3,3} + q_{4}S_{4,3} \nonumber \\&\quad + q_{5}S_{5,3}+ q_{6}S_{6,3} + q_{7}S_{7,3} + q_{8}S_{8,3} + q_{9}S_{9,3} + q_{10}S_{10,3} = m_{3} \end{aligned}$$
(61)
$$\begin{aligned}&q_{1}S_{1,4} + q_{2}S_{2,4} + q_{3}S_{3,4} + q_{4}S_{4,4} \nonumber \\&\quad + q_{5}S_{5,4}+ q_{6}S_{6,4} + q_{7}S_{7,4} + q_{8}S_{8,4} + q_{9}S_{9,4} + q_{10}S_{10,4} = m_{4} \end{aligned}$$
(62)

To define a mapping between q and k, let \(q_i = k_{i,i}\) for \(i=1,2N\). This is the diagonal of the matrix k. For \(i>2N\), we assign the remaining \(q_{i}\) to the elements for which \(i<j\), left to right and top to down (with x denoting redundant elements due to symmetry):

$$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} q_1 &{} q_5 &{} q_6 &{} q_{7}\\ x &{} q_2 &{} q_8 &{} q_9\\ x &{} x &{} q_3 &{} q_{10}\\ x &{} x &{} x &{} q_4\\ \end{array} \right) \rightarrow \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} k_{11} &{} k_{12} &{} k_{13} &{} k_{14}\\ x &{} k_{22} &{} k_{23} &{} k_{24}\\ x &{} x &{} k_{33} &{} k_{34}\\ x &{} x &{} x &{} k_{44}\\ \end{array} \right) \end{aligned}$$
(63)

Note that q is not a matrix, it is only illustrated this way for clarity.

The selection matrix S contains integer elements of 0, 1, or 2. This will account for (by setting the value of S equal to 0) the extra terms in Eqs. (59)–(62) that are not in Eq. (58), and account for the coefficient of 2 in front of some terms.

Rewriting Eq. (58) with this mapping,

$$\begin{aligned}&2q_1 + q_5 + q_6 + q_7 = m_1 \nonumber \\&2q_2 + q_5 + q_8 + q_9 = m_2 \nonumber \\&2q_3 + q_6 + q_8 + q_{10} = m_3 \nonumber \\&2q_4 + q_7 + q_9 + q_{10} = m_4 \end{aligned}$$
(64)

The matrix S must then be

$$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} 2 &{} 0 &{} 0 &{} 0\\ 0 &{} 2 &{} 0 &{} 0\\ 0 &{} 0 &{} 2 &{} 0\\ 0 &{} 0 &{} 0 &{} 2\\ 1 &{} 1 &{} 0 &{} 0\\ 1 &{} 0 &{} 1 &{} 0\\ 1 &{} 0 &{} 0 &{} 1\\ 0 &{} 1 &{} 1 &{} 0\\ 0 &{} 1 &{} 0 &{} 1\\ 0 &{} 0 &{} 1 &{} 1\\ \end{array} \right) \end{aligned}$$
(65)

Once the S matrix is defined, Eq. (57) can be solved for any given set of \(m_p\) by finding the integers satisfying the equation.

Appendix B

In this appendix we show how to calculate a Gaussian integral used in the derivation of the matrix elements. Equations similar to this have been published before (see e.g. in Ref. [41]), but here we prove it for a general complex symmetric matrix.

Let \(A \in \mathbb {C}^{N\times N}\) be a complex-symmetric matrix with positive-definite real part. Then for any \(Q \in \mathbb {C}^{N \times N}\) and \(s \in \mathbb {C}^N\)

$$\begin{aligned}&\int _{\mathbb {R}^N} \frac{1}{2} \mathbf x ^T Q \mathbf x \exp \left( -\frac{1}{2} \mathbf x ^T A \mathbf x + \mathbf s ^T \mathbf x \right) d\mathbf x \nonumber \\&\quad =\sqrt{\frac{2\pi }{\det B}}\exp \left( \frac{1}{2} \mathbf s ^T A^{-1} \mathbf s \right) \left[ \frac{1}{2} \hbox {Tr}(Q A^{-1} + \frac{1}{2}(A^{-1} \mathbf s )^T Q (A^{-1} \mathbf s )\right] \end{aligned}$$
(66)

Proof

As in the preceding proof, pick an invertible matrix \(V \in \mathbb {R}^{N \times N}\) such that \(D \equiv {V^T AV}\) is diagonal, and let \(R \equiv {V^T QV}\) and \(\mathbf u \equiv {V^T} \mathbf s \). Then by performing a change of variable \(\mathbf y = {V}^T \mathbf x \), we can write

$$\begin{aligned}&I \equiv \int _{\mathbb {R}^N} \frac{1}{2} \mathbf x ^T Q \mathbf x \exp \left( -\frac{1}{2} \mathbf x ^T A \mathbf x + \mathbf s ^T \mathbf x \right) d\mathbf x \nonumber \\&\quad = \int _{\mathbb {R}^N} \frac{1}{2} \mathbf x ^T Q \mathbf x \exp \left( -\frac{1}{2} \mathbf x ^T V^{-T} D V^{-1} \mathbf x + \mathbf s ^T \mathbf x \right) d\mathbf x \nonumber \\&\quad = \int _{\mathbb {R}^N} \frac{1}{2} \mathbf y ^T V^T Q V \mathbf y \exp \left( -\frac{1}{2} \mathbf y ^T D \mathbf y + \mathbf s ^T V\mathbf y \right) \det V d\mathbf y \nonumber \\&\quad = \frac{\det V}{2} \int _{\mathbb {R}^N} \mathbf y ^T R \mathbf y \exp \left( -\frac{1}{2} \mathbf y ^T R \mathbf y + \mathbf u ^T \mathbf y \right) d\mathbf y \nonumber \\&\quad = \frac{\det V}{2} \int _{\mathbb {R}^N} \sum _{j,k=1}^N R_{jk} y_j y_k \exp \left( \frac{1}{2} \sum _{l=1}^N d_l y_{l}^2 + \sum _{l=1}^N u_l y_l \right) d\mathbf y \nonumber \\&\quad = \frac{\det V}{2} \sum _{j,k=1}^N R_{jk} \int _{\mathbb {R}^N} y_j y_k \prod _{l=1}^N \exp \left( -\frac{1}{2}d_l y_{l}^2 + u_l y_l \right) d\mathbf y \end{aligned}$$
(67)

At this point, we consider separately the \(j=k\) and \(j \ne k\) terms. When \(j=k\), we want to evaluate the integral

$$\begin{aligned} I_j \equiv \int _{\mathbb {R}^N} y_{j}^2 \prod _{l=1}^N \exp \left( -\frac{1}{2} d_l y_{l}^2 + u_l y_l \right) d\mathbf y \end{aligned}$$
(68)

Observe that each term with \(l \ne j\) contributes a factor of

$$\begin{aligned} \int _{-\infty }^\infty \exp \left( -\frac{1}{2} d_l y_{l}^2 + u_l y_l\right) dy_l = \sqrt{\frac{2 \pi }{d_l}} \exp \left( \frac{u_{l}^2}{2d_l} \right) \end{aligned}$$
(69)

while the \(l=j\) term contributes a factor of

$$\begin{aligned} \int _{-\infty }^\infty \exp \left( -\frac{1}{2} d_j y_{j}^2 + u_j y_j\right) dy_j = \left( \frac{d_j + u_{j}^2}{d_{j}^2}\right) \sqrt{\frac{2 \pi }{d_j}} \exp \left( \frac{u_{j}^2}{2d_j} \right) \end{aligned}$$
(70)

multiplying these factors gives the result

$$\begin{aligned} I_j = \left( \frac{d_j + u_{j}^2}{d_{j}^2} \right) \prod _{l=1}^N \sqrt{\frac{2 \pi }{d_l}} \exp \left( \frac{u_{j}^2}{2d_j} \right) = \left( \frac{d_j + u_{j}^2}{d_{j}^2}\right) \sqrt{\frac{(2 \pi )^N}{\det D}} \exp \left( \frac{1}{2} \mathbf s ^T A^{-1} \mathbf s \right) \end{aligned}$$
(71)

When \(j \ne k\) we want to evaluate the integral

$$\begin{aligned} I_{jk} \equiv \int _{{\mathbb {R}^N}} y_j y_k \prod _{l=1}^N \exp \left( -\frac{1}{2} d_l y_{l}^2 + u_l y_l \right) d\mathbf y \end{aligned}$$
(72)

Again, each term with \(l \ne j,k\), contributes a factor of \(\sqrt{\frac{2 \pi }{d_l}}\exp (\frac{u_{l}^2}{2d_l})\), while the \(l=j,k\) terms contribute a factor of

$$\begin{aligned} \int _{-\infty }^\infty y_j \exp \left( -\frac{1}{2} d_j y_{j}^2 + u_j y_j \right) dy_j = (\frac{u_j}{d_j})\sqrt{\frac{2 \pi }{d_j}} \exp \left( \frac{u_{j}^2}{2d_j} \right) \end{aligned}$$
(73)

Multiplying these factors gives the result

$$\begin{aligned} I_{jk} = \left( \frac{u_j u_k}{d_j d_k}\right) \prod _{l=1}^N \sqrt{\frac{2 \pi }{2d_l}} \exp \left( \frac{u_{j}^2}{2d_j} \right) = \left( \frac{u_j u_k}{d_j d_k}\right) \sqrt{\frac{(2 \pi )^N}{\det D}} \exp \left( \frac{1}{2} \mathbf s ^T A^{-1} \mathbf s \right) \end{aligned}$$
(74)

Returning to the integral, we have

$$\begin{aligned} I= & {} \frac{\det V}{2} \Big [\sum _{j=1}^N R_{jj} I_j + \sum _{j \ne k}^N R_{jk} I_{jk} \Big ] \nonumber \\= & {} \frac{\det V}{2} \sqrt{\frac{(2 \pi )^N}{\det D}} \exp \left( \frac{1}{2} \mathbf s ^T A^{-1} \mathbf s \right) \Big [\sum _{j=1}^N R_{jj} \frac{d_j + u_{j}^2}{d_{j}^2} + \sum _{j \ne k}^N R_{jk} \frac{u_j u_k}{d_j d_k} \Big ] \nonumber \\= & {} \frac{1}{2} \sqrt{\frac{(2 \pi )^N}{\det (V^{-T} D V^{-1})}} \exp \left( \frac{1}{2} \mathbf s ^T A^{-1} \mathbf s \right) \Big [ \sum _{j=1}^N \frac{R_{jj}}{d_j} + \sum _{j,k=1}^N R_{jk} \frac{u_j u_k}{d_j d_k} \nonumber \\= & {} \sqrt{\frac{(2 \pi )^N}{\det D}} \exp \left( \frac{1}{2} \mathbf s ^T A^{-1} \mathbf s \right) \Big [ \frac{1}{2} \hbox {Tr}(R D^{-1}) + \frac{1}{2} \mathbf u ^T D^{-T} T D^{-1} \mathbf u \Big ] \nonumber \\= & {} \sqrt{\frac{(2 \pi )^N}{\det D}} \exp \left( \frac{1}{2} \mathbf s ^T A^{-1} \mathbf s \right) \Big [\frac{1}{2} \hbox {Tr}((V^T Q V)(V^T A V)^{-1}) \nonumber \\&+ \frac{1}{2} \mathbf u ^T (V^T A V)^{-T}(V^T Q V)(V^T A V)^{-1} \mathbf u \Big ] \nonumber \\= & {} \sqrt{\frac{(2 \pi )^N}{\det D}} \exp \left( \frac{1}{2} \mathbf s ^T A^{-1} \mathbf s \right) \Big [ \frac{1}{2} \hbox {Tr}(Q A^{-1}) + \frac{1}{2}(A^{-1}{} \mathbf s )^{T} Q (A^{-1} \mathbf s ) \Big ], \end{aligned}$$
(75)

which is the desired result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaklama, T., Zhang, D., Rowan, K. et al. Matrix Elements of One Dimensional Explicitly Correlated Gaussian Basis Functions. Few-Body Syst 61, 6 (2020). https://doi.org/10.1007/s00601-019-1539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-019-1539-3

Navigation