Skip to main content
Log in

Effects of Generalized Uncertainty Principle on the \(\mathbf (1+1) \) Dimensional DKP Oscillator with Linear Potential

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Based on \( 3\times 3\) irreducible representation of Duffin–Kemmer–Petiau (DKP) algebras, we obtain the bound-states energy spectrum, the wave function and the probability density of DKP oscillator with linear potential under the effect of Generalized Uncertainty Principle in the momentum space representation. In addition, the numerical results of the bound-states energy spectrum are discussed. It shows that the deformation parameter \(\beta \) and the linear potential parameter \(\lambda \) have non-negligible effect on the \((1 + 1)\) dimensional DKP oscillator system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. B 216, 1 (1989)

    Article  ADS  Google Scholar 

  2. J.Y. Bang, M.S. Berger, Phys. Rev. D 74, 12 (2006)

    Article  Google Scholar 

  3. A. Kempf, J. Math. Phys. 35, 9 (1994)

    MathSciNet  Google Scholar 

  4. A. Kempf, G. Mangano, Phys. Rev. D 55, 12 (1997)

    Google Scholar 

  5. H. Hinrichsen, A. Kempf, J. Math. Phys. 37, 5 (1996)

    Article  Google Scholar 

  6. H. Hassanabadi, S. Zarrinkamar, E. Maghsoodi, Phys. Lett. B 718, 2 (2012)

    Article  Google Scholar 

  7. S. Zarrinkamar, K. Jahankohan, H. Hassanabadi, Can. J. Phys. 93, 3 (2015)

    Article  Google Scholar 

  8. H. Hassanabadi, S. Zarrinkamar, A.A. Rajabi, Phys. Lett. B 718, 3 (2013)

    Article  Google Scholar 

  9. S.R. Wu, Z.W. Long, C.Y. Long, Y. Liu, Eur. Phys. J. Plus 132, 186 (2017)

    Article  Google Scholar 

  10. R.J. Sastry, J. Ramchander, J. Phys. A Math. Gen. 33, 46 (2000)

    Article  MathSciNet  Google Scholar 

  11. P. Pedram, Eur. Phys. J. C 73, 5 (2013)

    Article  Google Scholar 

  12. D.J. Gross, P.F. Mende, Phys. Lett. B 197, 6 (1987)

    Article  ADS  Google Scholar 

  13. K. Konishi, G. Paffuti, P. Provero, Phys. Lett. B 234, 10 (1990)

    Article  Google Scholar 

  14. J. Magueijo, L. Smolin, Phys. Rev. D 71, 2 (2005)

    Article  Google Scholar 

  15. S. Benczik, L.N. Chang, D. Minic, T. Takeuchi, Phys. Rev. A 72, 1 (2005)

    Article  Google Scholar 

  16. N. Kemmer, Proc. R. Soc. A 166, 924 (1938)

    Google Scholar 

  17. R.J. Duffin, Phys. Rev. 54, 12 (1938)

    Article  Google Scholar 

  18. G. Petiau, Acad. R. Belg. Mem. Collect 16, 2 (1936)

    Google Scholar 

  19. R.F. Guertin, T.L. Wilson, Phys. Rev. D 15, 6 (1977)

    Article  Google Scholar 

  20. B. Vijayalakshmi, M. Seetharaman, P.M. Mathews, J. Phys. A Math. Gen. 12, 5 (2001)

    Google Scholar 

  21. R.A. Krajcik, M.M. Nieto, Am. J. Phys. 45, 45 (1977)

    Article  Google Scholar 

  22. E. Friedman, G. Kaelbermann, C.J. Batty, Phys. Rev. C 34, 6 (1986)

    Article  Google Scholar 

  23. B.C. Clark, S. Hama, G. Kalbermann, R.L. Mercer, L. Ray, Phys. Rev. Lett. 55, 6 (1985)

    Google Scholar 

  24. I.V. Kanatchikov, Rep. Math. Phys. 46, 1 (2000)

    Article  MathSciNet  Google Scholar 

  25. L.K. Kerr, B.C. Clark, S. Hama, L. Ray, G.W. Hoffmann, Prog. Theor. Phys. 103, 2 (2000)

    Article  Google Scholar 

  26. L.B. Castro, L.P. de Oliveira, M.G. Garcia, A.S. de Castro, Eur. Phys. J. C 77, 310 (2017)

    Article  ADS  Google Scholar 

  27. L.B. Castro, A.S. de Castro, Phys. Lett. A 375, 2596 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  28. T.R. Cardoso, L.B. Castro, A.S. de Castro, J. Phys. A 45, 075302 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  29. L.B. Castro, L.P. de Oliveira, Adv. High Energy Phys. 2014, ID 784072 (2014)

  30. D. Itô, K. Mori, E. Carriere, Nuovo Cimento A 51, 4 (1967)

    Article  Google Scholar 

  31. M. Moshinsky, A. Szczepaniak, J. Phys. A Math. Gen. 22, L817 (1989)

    Article  ADS  Google Scholar 

  32. Y. Nedjadi, R.C. Barrett, J. Phys. A Math. Gen. 31, 31 (1999)

    Google Scholar 

  33. Y. Nedjadi, R.C. Barrett, J. Math. Phys. 35, 9 (1994)

    Article  Google Scholar 

  34. M. Hosseinpour, H. Hassanabadi, F.M. Andrade, Eur. Phys. J. C 78, 2 (2017)

    Google Scholar 

  35. H. Hassanabadi, Z. Molaee, S. Zarrinkamar, Eur. Phys. J. C 72, 11 (2012)

    Article  Google Scholar 

  36. L.B. Castro, Eur. Phys. J. C 75, 287 (2015)

    Article  ADS  Google Scholar 

  37. J.T. Lunardi, J. Math. Phys. 58, 12 (2017)

    Article  Google Scholar 

  38. L. Chetouani, M. Merad, T. Boudjedaa, A. Lecheheb, Int. J. Theor. Phys. 43, 4 (2004)

    Article  Google Scholar 

  39. A. Boumali, J. Math. Phys. 54, 9 (2013)

    Article  MathSciNet  Google Scholar 

  40. Y. Chargui, A. Trabelsi, L. Chetouani, Phys. Lett. A 374, 29 (2010)

    Google Scholar 

  41. T.R. Cardoso, L.B. Castro, A.S. De Castro, J. Phys. A Math. Theor. 43, 5 (2010)

    Article  Google Scholar 

  42. L.B. Castro, A.S. de Castro, Ann. Phys. 351, 571 (2014)

    Article  ADS  Google Scholar 

  43. R. Garattini, M. Faizal, Nucl. Phys. B 905, 2 (2016)

    Article  Google Scholar 

  44. S. Abe, T. Fujita, Nucl. Phys. 475, 4 (1987)

    Article  Google Scholar 

  45. E. Eich, D. Rein, R. RodenbergEich, Z. Phys. C 28, 2 (1985)

    Article  Google Scholar 

  46. Y. Chargui, Phys. Lett. A 382, 14 (2018)

    Article  MathSciNet  Google Scholar 

  47. F. Taskln, Z. Yaman, Int. J. Theor. Phys. 51, 12 (2012)

    Google Scholar 

  48. Y. Chargui, L. Chetouani, A. Trabelsi, Chin. Phys. B 19, 2 (2010)

    Article  Google Scholar 

  49. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals Series and Products (Academic Press, New York, 2000)

    MATH  Google Scholar 

  50. Y. Chargui, A. Trabelsi, L.Y. Chetouani, Phys. Lett. A 374, 4 (2010)

    Google Scholar 

  51. N.A. Rao, B.A. Kagali, Phys. Scr. 77, 1 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11465006 and 11565009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Wen Long.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Long, ZW., Zhao, ZL. et al. Effects of Generalized Uncertainty Principle on the \(\mathbf (1+1) \) Dimensional DKP Oscillator with Linear Potential. Few-Body Syst 61, 11 (2020). https://doi.org/10.1007/s00601-020-1542-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-020-1542-8

Navigation