Skip to main content
Log in

Determining the Temperature Diffusivity of Transparent Materials via a Modified Laser Flash Technique

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A new thermographic express technique for determining the thermal diffusivity of transparent materials and optical components is described, and results from testing it on glasses and polymeric materials are presented. An algorithm for deriving the thermal diffusivity coefficient from the raw data eliminates the need to determine the absolute temperatures and absorbed energy of the incident radiation flux, ensuring a random error of less than 2–3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Osiko, V.V., Lazernye materialy (Laser Materials), Moscow: Nauka, 2002.

  2. Popov, P.A., Dukel’skii, K.V., Mironov, I.A., et al., Dokl. Phys., 2007, vol. 52, no. 1, p. 7.

    Article  ADS  Google Scholar 

  3. Lykov, A.V., Metody opredeleniya teploprovodnosti i temperaturoprovodnosti (Methods for Determining Thermal Conductivity and Thermal Diffusivity), Moscow: Energiya, 1973.

  4. Vavilov, V.P., Infrakrasnaya termografiya i teplovoi kontrol’ (Infrared Thermography and Thermal Control), Moscow: Spektr, 2013.

  5. Hammerschmidt, U., Hameury, J., Strnad, R, et al., Int. J. Thermophys., 2015, vol. 36, p. 1530.

    Article  ADS  Google Scholar 

  6. Yüksel, N., in Insulation Materials in Context of Sustainability, London: InTech, 2016, p. 113.

    Google Scholar 

  7. Parker, W.J., Jenkins, R.J., Butler, C.P., and Abbot, G.L., J. Appl. Phys., 1961, vol. 32, p. 1679.

    Article  ADS  Google Scholar 

  8. Skvortsov, L.A., Osnovy fototermicheskoi radiometrii i lazernoi termografii (Fundamentals of Photothermal Radiometry and Laser Thermography), Moscow: Tekhnosfera, 2017.

  9. Okamoto, Y., Watanabe, S., Ogata, K., et al., Jpn. J. Appl. Phys., 2017, vol. 56, 056601.

    Article  ADS  Google Scholar 

  10. Kruczek, T., Adamczyk, W.P., and Bialecki, R.A., Int. J. Thermophys., 2013, vol. 34, p. 467.

    Article  ADS  Google Scholar 

  11. Netzsch. www.netzsch.com.

  12. TA Instruments. www.tainstruments.com/wp-content/uploads/BROCH_Light_Flash_2017.pdf.

  13. ISO 22007-4: Plastics. Determination of Thermal Conductivity and Thermal Diffusivity. Part 4. Laser Flash Method, 2017.

  14. ASTM E1461-13: Standard Test Method for Thermal Diffusivity by the Flash Method.

  15. Salazar, A., Mendioroz, A., Apiñaniz, E., et al., Meas. Sci. Technol., 2014, vol. 25, no. 3, 035604.

    Article  ADS  Google Scholar 

  16. Dong, H., Zheng, B., Chen, F., Infrared Phys. Technol., 2015, vol. 73, p. 130.

    Article  ADS  Google Scholar 

  17. Genna, S. and Ucciardello, N., Opt. Laser Technol., 2019, vol. 113, p. 338.

    Article  ADS  Google Scholar 

  18. Bedoya, A., González, J., Rodríguez, J., et al., Measurement, 2019, vol. 134, p. 519.

    Article  Google Scholar 

  19. Golovin, Yu.I., Turin, A.I., Golovin, D.Yu., and Samodurov, A.A., Inorg. Mater., 2019, vol. 55, no. 15, p. 7.

    Article  Google Scholar 

  20. Golovin, Yu.I., Tyurin, A.I., Golovin, D.Yu., and Samodurov, A.A., Zavod. Lab.,Diagn. Mater., 2018, vol. 84, no. 6, p. 23.

    Article  Google Scholar 

  21. Golovin, D.Yu., Tyurin, A.I., Samodurov, A.A., et al., Russ. Phys. J., 2019, vol. 62, no. 6, p. 1099.

    Article  Google Scholar 

  22. Golovin, D.Yu., Divin, A.G., Samodurov, A.A., et al., in Contemporary Issues in Non-Destructive Testing and Evaluation, London: InTech, 2019, p. 1.

    Google Scholar 

  23. Palumbo, D., Cavallo, P., and Galietti, U., NDT&E Int., 2019, vol. 102, p. 254.

    Article  Google Scholar 

  24. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, Oxford: Clarendon, 1959, 2nd ed.

    MATH  Google Scholar 

  25. GOST (State Standard) 13659-78: Colourless Optical Glass. Physical and Chemical Properties. Basic Parameters, Moscow, 1979.

  26. Novichenok, L.N. and Shul’man, E.P., Teplofizicheskie svoistva polimerov (Thermophysical Properties of Polymers), Minsk: Nauka Tekhnika, 1971.

Download references

ACKNOWLEDGMENTS

Experimental results were obtained on equipment at Tambov State University’s shared resource center.

Funding

This work was supported by the Russian Science Foundation (project no. 15-19-00181, experiment and data processing), the Russian Foundation for Basic Research (project no. 17-48-680817, development of analytical and computer models), and the Ministry of Science and Higher Education of the Russian Federation (project no. 16.2100.2017/4.6, manufacturing and debugging of the original pilot device).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Golovin.

Additional information

Translated by. O. Zhukova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovin, Y.I., Tyurin, A.I., Golovin, D.Y. et al. Determining the Temperature Diffusivity of Transparent Materials via a Modified Laser Flash Technique. Bull. Russ. Acad. Sci. Phys. 84, 829–834 (2020). https://doi.org/10.3103/S1062873820070114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820070114

Navigation